Identities on units of algebraic algebras (2001)
- Authors:
- USP affiliated authors: DOKUCHAEV, MIKHAJOLO - IME ; GONCALVES, JAIRO ZACARIAS - IME
- Unidade: IME
- Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS
- Language: Português
- Imprenta:
-
ABNT
DOKUCHAEV, Michael e GONÇALVES, Jairo Zacarias. Identities on units of algebraic algebras. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/2fc960c5-9c89-4ecc-9145-2ddd897b1379/1234618.pdf. Acesso em: 12 fev. 2026. , 2001 -
APA
Dokuchaev, M., & Gonçalves, J. Z. (2001). Identities on units of algebraic algebras. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/2fc960c5-9c89-4ecc-9145-2ddd897b1379/1234618.pdf -
NLM
Dokuchaev M, Gonçalves JZ. Identities on units of algebraic algebras [Internet]. 2001 ;[citado 2026 fev. 12 ] Available from: https://repositorio.usp.br/directbitstream/2fc960c5-9c89-4ecc-9145-2ddd897b1379/1234618.pdf -
Vancouver
Dokuchaev M, Gonçalves JZ. Identities on units of algebraic algebras [Internet]. 2001 ;[citado 2026 fev. 12 ] Available from: https://repositorio.usp.br/directbitstream/2fc960c5-9c89-4ecc-9145-2ddd897b1379/1234618.pdf - Semigroup identities on units of integral group rings
- On free subgroups in division rings
- Aneis de grupos com grupos de unidades soluveis
- Explicit free groups in division rings
- Free unit groups in group rings and division rings: my collaboration with Don Passman
- Free groups in subnormal subgroups and the residual nilpotence of the group of units of groups rings
- Free groups in central simple algebras without Tits' theorem
- Free groups in normal subgroups of the multiplicative group of a division ring
- Linear groups and group rings
- Bass cyclic units as factors in a free group in integral group ring units
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 1234618.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
