

RT-MAT 2001-12

Identities on Units of Algebraic Algebras.

M.A. Dokuchaev
and
J.Z. Gonçalves

Outubro 2001

Esta é uma publicação preliminar (“preprint”).

IDENTITIES ON UNITS OF ALGEBRAIC ALGEBRAS

M. A. DOKUCHAEV AND J. Z. GONÇALVES

ABSTRACT. Let \mathcal{A} be an algebraic algebra over an infinite field K and $\mathcal{U}(\mathcal{A})$ be its group of units. We prove a stronger version of Hartley's Conjecture for \mathcal{A} , namely, if a Laurent polynomial identity (LPI, for short) $f = 0$ is satisfied in $\mathcal{U}(\mathcal{A})$, then \mathcal{A} satisfies a polynomial identity (PI). We also show that, if \mathcal{A} is non-commutative, then \mathcal{A} is PI, provided $f = 0$ is satisfied by the non-central units of \mathcal{A} . In particular, \mathcal{A} is locally finite and, thus, the Kurosh Problem has a positive answer for K -algebras whose unit group is LPI. Moreover, $f = 0$ holds in $\mathcal{U}(\mathcal{A})$ if and only if the same identity is satisfied in \mathcal{A} . The last fact remains true for generalized Laurent polynomial identities, provided that \mathcal{A} is locally finite.

1. INTRODUCTION

Let K be an infinite field, \mathcal{A} be a unitary associative K -algebra and $\mathcal{U}(\mathcal{A})$ be its group of units. For algebras with "many units" several recent papers considered the following conjecture: *if $\mathcal{U}(\mathcal{A})$ satisfies a group identity (GI), or a semigroup identity (SI), then \mathcal{A} is PI* [1], [3], [4], [6], [7], [8], [9], [10], [11], [14], [16]. In the case of group algebras of torsion groups this conjecture is attributed to Brian Hartley. In this note we consider a stronger version of Hartley's Conjecture for algebraic algebras, substituting GI or SI by an arbitrary Laurent polynomial identity (LPI). Moreover, we want to transfer the law from $\mathcal{U}(\mathcal{A})$ to \mathcal{A} . Namely, we consider the following question: *if \mathcal{A} is an algebra with "many" units such that $\mathcal{U}(\mathcal{A})$ is LPI (in particular, GI or SI), is it true that \mathcal{A} satisfies the same identity?* We also consider such transferring from the non-central units of \mathcal{A} to \mathcal{A} , when \mathcal{A} is non-commutative.

By a Laurent polynomial $f = f(\zeta_1, \zeta_2, \dots, \zeta_k)$ we mean a non-zero element of KF_k , the group algebra over the field K of the free group F_k freely generated by $\zeta_1, \zeta_2, \dots, \zeta_k$. A generalized Laurent polynomial is a non-zero element of the free product (coproduct) $\mathcal{A} *_K KF_k$ of \mathcal{A} and KF_k over K .

Let $f = f(\zeta_1, \zeta_2, \dots, \zeta_k)$ be a generalized Laurent polynomial which does not involve the inverses of ζ_1, \dots, ζ_s ($0 \leq s \leq k$) and the inverses of $\zeta_{s+1}, \dots, \zeta_k$ do appear in f . We say that \mathcal{A} satisfies the identity $f = 0$ if this equality always holds after substituting the ζ_1, \dots, ζ_s by arbitrary elements of \mathcal{A} and the $\zeta_{s+1}, \dots, \zeta_k$ by arbitrary units of \mathcal{A} . Then we come to the concept of a group identity $u = 1$ in its usual sense if we take $f = u - 1$, where $u = u(\zeta_1, \dots, \zeta_k)$ is an element of F_k . If all the inverses of ζ_i 's are involved in u

The authors were partially supported by CNPq of Brazil. Proc. 301115/95-8, Proc. 302756/82-5
1991 Mathematics Subject Classification: Primary 16U60; Secondary 16R50, 16S34, 16S35.

Key words and phrases: algebras, units, Laurent polynomial identity.

(or f), then $s = 0$ and only units of \mathcal{A} are allowed to be substituted in u (or f).

Depending on the way that an identity is written, we can extract more or less information on the algebra structure, when transferring the identity from $\mathcal{U}(\mathcal{A})$ to \mathcal{A} . Let us illustrate this with the following example.

Let \mathcal{A} be an algebra such that the identities (GI, LPI or GLPI) are transferable from $\mathcal{U}(\mathcal{A})$ to \mathcal{A} . If $\mathcal{U}(\mathcal{A})$ satisfies the identity $x^{-1}y^{-1}xy = 1$ then the same will be true for \mathcal{A} , however, since only invertible elements are allowed, this does not give anything new about \mathcal{A} . On the other hand, if we say that $\mathcal{U}(\mathcal{A})$ satisfies $xy = yx$ then \mathcal{A} is also commutative, the conclusion becomes different.

This note is structured in the following way. In Section 2 we consider locally finite algebras \mathcal{A} over an infinite field and prove that if $\mathcal{U}(\mathcal{A})$ satisfies a GLPI $f = 0$ then the same identity holds in \mathcal{A} . Moreover, if \mathcal{A} is non-commutative then $f = 0$ holds in \mathcal{A} if and only if $f = 0$ is satisfied by the non-central units of \mathcal{A} (Theorem 1). In particular, a generalized polynomial, group or semigroup law can be transferred from the non-central units to \mathcal{A} . We also give easy applications to group algebras, twisted group algebras and nil-generated unitary algebras (Corollary 4).

In Section 3 we prove that if \mathcal{A} is an algebraic algebra over an infinite field K such that $\mathcal{U}(\mathcal{A})$ satisfies an LPI $f = 0$, then a PI holds in \mathcal{A} . Moreover, if \mathcal{A} is non-commutative, then \mathcal{A} is PI, provided $f = 0$ is satisfied on the non-central units of \mathcal{A} (Theorem 5). This establishes a strong version of Hartley's Conjecture. It follows that \mathcal{A} is locally finite and thus \mathcal{A} satisfies $f = 0$. In particular, a PI can be transferred from $\mathcal{U}(\mathcal{A})$ to \mathcal{A} (Corollary 9), and the Kurosh Problem has a positive answer for K -algebras whose non-central units satisfy an LPI.

2. LOCALLY FINITE ALGEBRAS

Theorem 1. *Let \mathcal{A} be a locally finite algebra over an infinite field K . Then*

- (i) *\mathcal{A} satisfies a GLPI if and only if the same identity holds in $\mathcal{U}(\mathcal{A})$.*
- (ii) *If \mathcal{A} is non-commutative, then a GLPI holds in \mathcal{A} if and only if the same identity is satisfied by the non-central units of \mathcal{A} . In particular, \mathcal{A} satisfies a generalized polynomial identity $f = 0$ if and only if $f = 0$ holds on the non-central units of \mathcal{A} .*

Proof. (i) The 'only if' part is obvious, so suppose that $\mathcal{U}(\mathcal{A})$ satisfies a GLPI $f = 0$ where $f = f(\zeta_1, \zeta_2, \dots, \zeta_k)$ does not involve the inverses of $\zeta_1, \zeta_2, \dots, \zeta_s$ ($0 \leq s \leq k$). If $s = 0$ this means that the inverses of all variables appear in f . In this case the claim is true by vacuity, since we are not allowed to make substitutions in f by non-invertible elements of \mathcal{A} . One may assume, therefore, that s is at least 1.

It is also clear that we may suppose that \mathcal{A} is of finite dimension n . Fixing a K -basis of \mathcal{A} we consider an arbitrary element $x \in \mathcal{A}$ as a point (x_1, \dots, x_n) in the affine space

$\mathcal{A} = K^n$. For a subset $Y \subset \mathcal{A}$ denote by $I(Y)$ the ideal of all polynomials on n variables x_1, \dots, x_n which annihilate each $y \in Y$. Then it is well known that $I(Y) = I(\overline{Y})$, where \overline{Y} is the closure of Y in \mathcal{A} with respect to the Zariski topology on \mathcal{A} .

It is easily seen that $\mathcal{U}(\mathcal{A})$ is open in \mathcal{A} . Indeed, let $\Gamma : \mathcal{A} \rightarrow M_n(K)$ be the regular representation of \mathcal{A} . If $\det(\Gamma(x)) \neq 0$ then $\Gamma(x)$ is invertible in $M_n(K)$, thus it can not be a zero divisor in $\Gamma(\mathcal{A})$. Since an element in a finite dimensional algebra is either a zero divisor or invertible, it follows that $\Gamma(x)$ is invertible in $\Gamma(\mathcal{A})$. Now, $\det(\Gamma(x))$ can be considered as a polynomial h in coordinates x_1, \dots, x_n of x . Hence

$$\mathcal{U}(\mathcal{A}) = \{(x_1, \dots, x_n) \in \mathcal{A} : h(x_1, \dots, x_n) \neq 0\},$$

and $\mathcal{U}(\mathcal{A})$ is an open subset in \mathcal{A} .

Fix elements $a_1, \dots, a_{s-1}, b_1, \dots, b_{s'} \in \mathcal{U}(\mathcal{A})$ ($s' = k - s$). If we substitute in

$$(1) \quad f(a_1, \dots, a_{s-1}, x, b_1, \dots, b_{s'}) = 0$$

the elements $a_1, \dots, a_{s-1}, x, b_1, \dots, b_{s'}$ by their coordinates with respect to the fixed basis, we obtain n equalities $f_1 = 0, \dots, f_n = 0$, where each f_i is a polynomial on variables x_1, \dots, x_n . Observe that for a given element $y = (y_1, \dots, y_n) \in \mathcal{A}$ the equality (1) is satisfied when substituting x by y if and only if $f_i(y_1, \dots, y_n) = 0$ for each $i = 1, \dots, n$. Since all f_i annihilate $\mathcal{U}(\mathcal{A})$, then

$$f_i(x_1, \dots, x_n) \in I(\mathcal{U}(\mathcal{A})) = I(\overline{\mathcal{U}(\mathcal{A})}) \quad (i = 1, \dots, n).$$

Because \mathcal{A} is an irreducible topological space and $\mathcal{U}(\mathcal{A})$ is open in \mathcal{A} , it follows that $\overline{\mathcal{U}(\mathcal{A})} = \mathcal{A}$ and, thus, each f_i annihilates \mathcal{A} . Coming back to our original identity this means that

$$f(a_1, \dots, a_{s-1}, c_s, b_1, \dots, b_{s'}) = 0$$

holds for all $a_1, \dots, a_{s-1}, b_1, \dots, b_{s'} \in \mathcal{U}(\mathcal{A})$, and each $c_s \in \mathcal{A}$. Suppose that we already proved that the identity

$$f(a_1, \dots, a_t, c_{t+1}, \dots, c_s, b_1, \dots, b_{s'}) = 0$$

holds for all $a_1, \dots, a_t \in \mathcal{U}(\mathcal{A}), c_{t+1}, \dots, c_s \in \mathcal{A}$ and $b_1, \dots, b_{s'} \in \mathcal{U}(\mathcal{A})$. Fixing units $a_1, \dots, a_{t-1}, b_1, \dots, b_{s'} \in \mathcal{U}(\mathcal{A})$ and elements $c_{t+1}, \dots, c_s \in \mathcal{A}$ and taking on the t^{th} place a variable element $x = (x_1, \dots, x_n)$, we see, again, that

$$(2) \quad f(a_1, \dots, a_{t-1}, x, c_{t+1}, \dots, c_s, b_1, \dots, b_{s'}) = 0$$

gives rise to n equalities $g_1 = 0, \dots, g_n = 0$, where each $g_i(x_1, \dots, x_n)$ is a polynomial, which annihilates $\mathcal{U}(\mathcal{A})$. As above, we obtain that it has to annihilate \mathcal{A} . Hence, (2) holds for all $x \in \mathcal{A}$. Thus, by induction, we conclude that the identity $f = 0$ is satisfied on \mathcal{A} .

(ii) Suppose now that \mathcal{A} is non-commutative and the identity $f = 0$ is satisfied by the non-central units of \mathcal{A} . By item (i) it is enough to show that $f = 0$ is satisfied on $\mathcal{U}(\mathcal{A})$.

Observe first that \mathcal{A} is generated, as a vector space over K , by $\mathcal{U}(\mathcal{A})$. Indeed, the K -linear span \mathcal{B} of $\mathcal{U}(\mathcal{A})$ is a subspace of \mathcal{A} and, therefore, is closed in \mathcal{A} with respect to the Zariski topology. Thus, $\mathcal{A} = \overline{\mathcal{U}(\mathcal{A})} \subset \mathcal{B}$ which gives $\mathcal{A} = \mathcal{B}$, as desired.

Since \mathcal{A} is non-commutative, the set \mathcal{V} of the non-central units of \mathcal{A} is non-empty. It can be easily seen that the centralizer $\mathcal{C}_{\mathcal{U}(\mathcal{A})}(y)$ of an element $y \in \mathcal{U}(\mathcal{A})$ in $\mathcal{U}(\mathcal{A})$ is closed in $\mathcal{U}(\mathcal{A})$, since the condition $xy = yx$ can be written as a system of polynomial equations in coordinates of $x \in \mathcal{U}(\mathcal{A})$. Hence the centre of $\mathcal{U}(\mathcal{A})$ is closed as an intersection of closed sets and thus \mathcal{V} is a non-empty open subset of $\mathcal{U}(\mathcal{A})$. Because $\mathcal{A} = \overline{\mathcal{U}(\mathcal{A})}$ is an irreducible space, it follows that $\mathcal{U}(\mathcal{A})$ is also irreducible and, consequently, \mathcal{V} is dense in $\mathcal{U}(\mathcal{A})$. This yields that $I(\mathcal{V}) = I(\mathcal{U}(\mathcal{A}))$.

Fix elements $a_1, \dots, a_{k-1} \in \mathcal{V}$ and write $f(a_1, \dots, a_{k-1}, x) = 0$ as a system of polynomial equations $h_1 = 0, \dots, h_n = 0$ in variables x_1, \dots, x_n . Since each h_i ($i = 1, \dots, n$) annihilates \mathcal{V} , it follows that $h_i \in I(\mathcal{U}(\mathcal{A}))$ and, consequently,

$$f(a_1, \dots, a_{k-1}, x) = 0$$

for all $x \in \mathcal{U}(\mathcal{A})$. As above, going by induction, we conclude that $f = 0$ holds on $\mathcal{U}(\mathcal{A})$. \square

Remark 2. Our proof shows that for a finite dimensional K -algebra \mathcal{A} a GLPI can be transferred to \mathcal{A} from an arbitrary non-empty open subset (in, particular, from a non-empty open subset of units).

The above result suggests the following problem:

Problem. Let \mathcal{A} be an algebra over an infinite field K such that \mathcal{A} is generated by its units as a vector space over K . Is it true that if $\mathcal{U}(\mathcal{A})$ satisfies a semigroup (group, polynomial, Laurent polynomial etc.) identity then \mathcal{A} satisfies the same identity?

Remark 3. Since a finite dimensional K -algebra is generated as a vector space over K by its units this fact also holds for algebraic K -algebras.

Corollary 4. Let K be an infinite field and suppose that one of the following conditions is satisfied:

- (i) \mathcal{A} is a nil-generated unitary K -algebra.
- (ii) \mathcal{A} is the group algebra KG of a torsion group G .
- (iii) K is algebraically closed and \mathcal{A} is a twisted group algebra K^tG of a torsion group G .

Then $\mathcal{U}(\mathcal{A})$ satisfies a GI if and only if the same identity is satisfied in \mathcal{A} . In particular, $\mathcal{U}(\mathcal{A})$ satisfies a SI if and only if a binomial identity holds in \mathcal{A} .

Proof. In view of the above theorem it suffices to show in all cases that \mathcal{A} is locally finite.

- (i) By [1], \mathcal{A} satisfies a polynomial identity. Moreover, it follows from [1, Lemma 2.2] that \mathcal{A} is algebraic. Hence by [12, Theor. 6.4.3] \mathcal{A} is locally finite.

(ii) By [8] \mathcal{A} satisfies a polynomial identity. Therefore, [15, pp. 196-197] implies that G is locally finite and hence \mathcal{A} is locally finite too.

(iii) By Theorem 5.1 and Theorem 3.8 of [3] $[G : \Delta(G)] < \infty$, $|\Delta'(G)| < \infty$, where $\Delta(G)$ is the FC-centre of G and $\Delta'(G)$ its commutator subgroup. Since G is torsion, it follows that G is locally finite and, consequently, \mathcal{A} is locally finite. \square

3. ALGEBRAIC ALGEBRAS

Theorem 5. *Let \mathcal{A} be an algebraic algebra over an infinite field K . If $\mathcal{U}(\mathcal{A})$ is LPI then \mathcal{A} is PI. Moreover, if \mathcal{A} is non-commutative then \mathcal{A} is PI, provided that the non-central units of \mathcal{A} satisfy an LPI.*

We fix first some notation. Let KF be the group K -algebra of the free group F on two free generators x_1 and x_2 , and $K\langle y_1, y_2 \rangle$ the free algebra on y_1 and y_2 over K . Denote by $K\langle y_1, y_2 \rangle[[\lambda_1, \lambda_2]]$ the ring of formal power series in the commutative indeterminates λ_1 and λ_2 with coefficients in $K\langle y_1, y_2 \rangle$.

We also need to introduce the ring $\mathcal{A}[[\lambda_1, \lambda_2]]_S$, the localization of the polynomial ring $\mathcal{A}[[\lambda_1, \lambda_2]]$ in the two commutative indeterminates λ_1 and λ_2 , by the multiplicative set S of all polynomials in λ_1 and λ_2 with coefficients in K , having non-zero constant term.

Let $a \in \mathcal{A}$ be such that $p(a) = 0$, where $p(x) = x^n + \alpha_1 x^{n-1} + \dots + \alpha_n \in K[x]$, $n > 1$, and let λ be a non-zero element of K . Set $a_\lambda = 1 + \lambda a$. Then a_λ is a root of the polynomial

$$h_\lambda(x) = p((x - 1)/\lambda).$$

Moreover, a_λ is invertible, except for finitely many values of λ in K . In fact, if a is nilpotent, then for each $\lambda \in K$

$$(3) \quad a_\lambda^{-1} = 1 - \lambda a + \lambda^2 a^2 + \dots + (-1)^{n-1} \lambda^{n-1} a^{n-1}.$$

If a is not nilpotent, then

$$(4) \quad a_\lambda^{-1} = -[a_\lambda^{n-1} + \beta_1(\lambda) a_\lambda^{n-2} + \dots + \beta_{n-1}(\lambda)]/[\lambda^n \beta_n(\lambda)],$$

where

$$h_\lambda(x) = \lambda^{-n} [x^n + \beta_1(\lambda) x^{n-1} + \dots + \beta_{n-1}(\lambda) x + \beta_n(\lambda)],$$

$$\lambda^{-n} \beta_n(\lambda) = h_\lambda(0) = p(-1/\lambda),$$

and each $\beta_i(\lambda)$ is a polynomial in λ over K .

We start with an easy preliminary result.

Lemma 6. *Let $f(\lambda_1, \lambda_2)$ be an element of $\mathcal{A}[\lambda_1, \lambda_2]_S$. Assume that there are two infinite subsets T_1 and T_2 in K , such that for all $\gamma_i \in T_i, 1 \leq i \leq 2, f(\gamma_1, \gamma_2) = 0$. Then f is identically zero.*

Proof. It follows by applying the standard Vandermonde argument. \square

We shall essentially use the following fact due to Makar-Limanov [13].

Lemma 7. *The homomorphism $\tau : KF \longrightarrow K\langle y_1, y_2 \rangle[[\lambda_1, \lambda_2]]$ defined by*

$$\tau(x_i) = 1 + \lambda_i y_i,$$

$$\tau(x_i^{-1}) = \sum_{j=0}^{\infty} (-\lambda_i y_i)^j \quad (1 \leq i \leq 2),$$

is injective.

We also need to transfer a polynomial identity from the non-central elements to the entire algebra:

Lemma 8. *Let \mathcal{A} be a non-commutative K -algebra. If a polynomial identity $P(x_1, x_2) = 0$ is satisfied by the non-central elements of \mathcal{A} then $P = 0$ holds in \mathcal{A} .*

Proof. We may suppose that P is homogeneous in each variable, i.e. every monomial of P has degree m in x_1 and degree s in x_2 (see [15, p. 215]). Let $a, b, c, z \in \mathcal{A}$ such that a, b are non-central and c, z are central. Then $P(a + c, b + z) = 0$ and write $P(a + c, b + z) = \sum_{i,j} \Phi_{ij}(a, b) c^i z^j$, where $\Phi_{ij}(a, b)$ are polynomials in a and b with coefficients in K . We see that $\Phi_{m0}(a, b) c^m = P(c, b)$, $\Phi_{0s}(a, b) z^s = P(a, z)$ and $\Phi_{ms}(a, b) c^m z^s = P(c, z)$. Taking arbitrarily $c \in K, z \in K$ we see by the Vandermonde determinant argument that each $\Phi_{ij}(a, b)$ is zero. Hence, $P(c, b) = P(a, z) = P(c, z) = P(a, b) = 0$ and $P = 0$ holds in \mathcal{A} . \square

Now we are ready to prove the theorem.

Proof of Theorem 5. Since the free group on two generators contains a free group on any finite number of generators, we may suppose that $\mathcal{U}(\mathcal{A})$ satisfies a two variable Laurent polynomial $0 \neq f(x_1, x_2) \in KF$. Fix $a, b \in \mathcal{A}$ and consider the elements $a_{\lambda_1}, b_{\lambda_2}, a_{\lambda_1}^{-1}, b_{\lambda_2}^{-1}$, which are contained in $\mathcal{A}[\lambda_1, \lambda_2]_S$ (see (3) and (4)).

We have the following commutative diagram of K -algebras and homomorphisms:

$$\begin{array}{ccccc}
 0 & \longrightarrow & KF & \xrightarrow{\tau} & K\langle y_1, y_2 \rangle[[\lambda_1, \lambda_2]] \\
 & & \downarrow \phi & & \downarrow \psi \\
 0 & \longrightarrow & \mathcal{A}[\lambda_1, \lambda_2]_S & \xrightarrow{i} & \mathcal{A}[[\lambda_1, \lambda_2]] \\
 & & \downarrow \epsilon & & \\
 & & \mathcal{A} & &
 \end{array}$$

Here ϕ is determined by $x_1 \rightarrow 1 + \lambda_1 a$, $x_2 \rightarrow 1 + \lambda_2 b$, ϵ is the evaluation given by $\lambda_1 \rightarrow \alpha_1$, $\lambda_2 \rightarrow \alpha_2$ for admissible $\alpha_1, \alpha_2 \in K$, ψ is defined by $y_1 \rightarrow a$, $y_2 \rightarrow b$, i denotes the inclusion of $\mathcal{A}[\lambda_1, \lambda_2]_S$ into $\mathcal{A}[[\lambda_1, \lambda_2]]$ and τ is defined in Lemma 7.

By Lemma 7, $0 \neq \tau(f) = \sum \lambda_1^i \lambda_2^j P_{ij}(y_1, y_2)$, where $P_{ij} \in K\langle y_1, y_2 \rangle$, $\deg_{y_1} P_{ij} = i$, $\deg_{y_2} P_{ij} = j$, $P_{00} = f(1, 1) = 0$. Take fixed indices i_0, j_0 such that $P_{i_0, j_0}(y_1, y_2)$ is a non-zero polynomial.

Looking at the diagram we see on one side, that $\phi(f)$ is an element of $\mathcal{A}[\lambda_1, \lambda_2]_S$, which by the inclusion i , can be seen also as an element of $\mathcal{A}[[\lambda_1, \lambda_2]]$. Since by the evaluation $\phi(f)$ goes to zero in \mathcal{A} , it follows by Lemma 6 that $\phi(f)$ is identically zero. On the other side, the commutativity of the diagram implies that $0 = (i \circ \phi)(f) = (\psi \circ \tau)(f)$. This shows that $P_{i_0, j_0}(a, b) = 0$. Since $a, b \in \mathcal{A}$ were arbitrary, it follows that $P_{i_0, j_0}(y_1, y_2) = 0$ is a polynomial identity for \mathcal{A} . This proves the first statement of the theorem.

Suppose now that \mathcal{A} is non-commutative and the non-central units of \mathcal{A} satisfy an LPI $g(\zeta_1, \zeta_2, \dots, \zeta_k) = 0$. It is easily seen that $\zeta_i \rightarrow x_2^{-i} x_1 x_2^i$ determines a monomorphism of the free group F_k with free generators $\zeta_1, \zeta_2, \dots, \zeta_k$ into the free group F of rank 2 freely generated by x_1, x_2 . Thus $g(\zeta_1, \zeta_2, \dots, \zeta_k)$ can be written as a Laurent polynomial $f(x_1, x_2)$ and $f = 0$ is satisfied by the non-central units of \mathcal{A} . The above considerations show then that the non-central elements of \mathcal{A} satisfy a polynomial identity $P(x_1, x_2) = 0$. Lemma 8 implies now that \mathcal{A} satisfies $P = 0$. \square

Corollary 9. *If \mathcal{A} is an algebraic algebra over an infinite field and $\mathcal{U}(\mathcal{A})$ satisfies a Laurent polynomial identity $f = 0$, then \mathcal{A} is locally finite and satisfies the same identity $f = 0$. In particular, if a polynomial (semigroup) identity is satisfied by $\mathcal{U}(\mathcal{A})$ then the same identity holds on \mathcal{A} . If \mathcal{A} is non-commutative, then these facts remains true when substituting $\mathcal{U}(\mathcal{A})$ by the set of the non-central units of \mathcal{A} .*

Proof. Indeed, by the positive answer to the Kurosh's Problem for P.I. algebras [12, Theorem 6.4.3], \mathcal{A} is locally finite and Theorem 1 implies that \mathcal{A} satisfies $f = 0$.

□

Corollary 10. *Let K be an infinite field.*

(i) *The Kurosh Problem has a positive answer for K -algebras whose non-central units satisfy an LPI.*

(ii) *Hartley's Conjecture holds for algebraic algebras over K .*

Remark 11. While this note was in preparation, an article by Chia-Hsin Liu [5] became electronically available. Among other results, the author proves Hartley's Conjecture for algebraic algebras over infinite fields. Thus, Theorem 5 can be considered as an extension of his result. We also observe that our methods are completely different.

Acknowledgements

The second author is indebted to Prof. A. Mandel for many useful conversations.

REFERENCES

- [1] Y. Billig, D. Riley, V. Tasic, Nonmatrix varieties and nil-generated algebras whose units satisfy a group identity, *J. of Algebra* 190, no. 1 (1997), 241-252.
- [2] Chia-Hsin Liu, Group algebras with units satisfying a group identity, *Proc. Amer. Math. Soc.* 127, no. 2 (1999), 327-336.
- [3] Chia-Hsin Liu, Passman D., S., Group algebras with units satisfying a group identity II, *Proc. Amer. Math. Soc.* 127, no. 2 (1999), 337-341.
- [4] Chia-Hsin Liu, Group identities on units of locally finite algebras and twisted group algebras, *Commun. Algebra* 28 (2000) no.10, 4783-4801.
- [5] Chia-Hsin Liu, Some properties of rings with units satisfying a group identity, *J. Algebra* 232 (2000), 226-235.
- [6] Dokuchaev, M., Gonçalves, J. Z., Semigroup identities on units of integral group rings, *Glasgow Math. J.* 39 (1997), 1-6.
- [7] Giambruno, A., Jespers, E., Valenti, A., Group identities on units of rings, *Arch. Math. (Basel)* 63 (1994), no. 4, 291-296.
- [8] Giambruno, A., Sehgal, S. K., Valenti, A., Group algebras whose units satisfy a group identity, *Proc. Amer. Math. Soc.* 125 (1997), no. 3, 629-634.
- [9] Giambruno, A., Sehgal, S. K., Valenti, A., Symmetric units and group identities, *Manuscripta Math.* 96 (1998), no. 4, 443-461.
- [10] Giambruno, A., Sehgal, S. K., Valenti, A., Group identities on units of algebras, *J. Algebra* 226 (2000), (1), 488-504.
- [11] Gonçalves, J. Z., Mandel, A., Semigroup identities on units of group algebras, *Arch. Math. (Basel)* 57 (1991), no. 6, 539-545.
- [12] Herstein, I., N., *Noncommutative rings*, Carus Monographs in Math., 15 Math. Assoc. Amer. (1968).
- [13] Makar-Limanov, L., On subnormal subgroups of skew fields, *J. Algebra* 114 (1988), 261-267.

- [14] Passman D., S., Group algebras with units satisfying a group identity II, *Proc. Amer. Math. Soc.* **125**, no.3 (1997), 657-662.
- [15] Passman, D., S., *The Algebraic Structure of Group Rings*, Interscience, New York, 1977.
- [16] Riley, D. M., Algebras with collapsing monomials, *Bull. London Math. Soc.* **30** (1998), 521-528.

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE SÃO PAULO, BRAZIL
E-mail address: dokucha@ime.usp.br

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE SÃO PAULO, BRAZIL
E-mail address: jzg@ime.usp.br

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA

TÍTULOS PUBLICADOS

2000-01 BARROS, S.R.M., PEREIRA, A.L., POSSANI, C. and SIMONIS, A. Spatially periodic equilibria for a non local evolution equation. 11p.

2000-02 GOODAIRE, E.G. and POLCINO MILIES, C. Moufang unit loops torsion over the centre. 10p.

2000-03 COSTA, R. and MURAKAMI, L.S.I. On idempotents and isomorphisms of multiplication algebras of Bernstein algebras. 12p.

2000-04 KOSZMIDER, P. On strong chains of uncountable functions. 24p.

2000-05 ANGELERI-HÜGEL, L and COELHO, F.U. Infinitely generated complements to partial tilting modules. 11p.

2000-06 GIANNONI, F., MASIELLO, A., PICCIONE, P. and TAUSK, D. V. A Generalized Index Theorem for Morse-Sturm Systems and applications to Semi-Riemannian Geometry. 45p.

2000-07 PICCIONE, P. and TAUSK, D.V. Lagrangian and Hamiltonian formalism for constrained variational problems. 29p.

2000-08 PICCIONE, P. and TAUSK, D.V. An index theorem for non periodic solutions of Hamiltonian Systems. 67p.

2000-09 GIAMBÒ R., GIANNONI, F. and PICCIONE, P. Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods. 25p.

2000-10 PICCIONE, P. and TAUSK, D.V. Variational Aspects of the Geodesic Problem in sub-Riemannian Geometry. 30p.

2000-11 GIANNONE, F. and PICCIONE, P. The Arrival Time Brachistochrones in General Relativity. 58p.

2000-12 GIANNONE, F., PICCIONE, P. and TAUSK, V. D. Morse Theory for the Travel Time Brachistochrones in stationary spacetimes. 70p.

2000-13 PICCIONE, P. Time minimizing trajectories in Lorentzian Geometry. The General-Relativistic Brachistochrone Problem. 23p.

2000-14 GIANNONI, F., PICCIONE, P. and SAMPALMIERI, R. On the geodesical connectedness for a class of semi-Riemannian manifolds. 31p.

2000-15 PICCIONE, P. and TAUSK, D. V. The Maslov Index and a generalized Morse Index Theorem for non positive definite metrics. 7p.

2000-16 PICCIONE, P. and TAUSK, D. V. On the Banach Differential Structure for sets of Maps on Non-Compact Domains. 26p.

2000-17 GONZÁLEZ, S., GUZZO JR, H. and VICENTE, P. Special classes of n^{th} -order Bernstein algebras. 16p.

2000-18 VICENTE, P. and GUZZO, H. Classification of the 5-dimensional power-associative 2nd-order Bernstein algebras. 23p.

2000-19 KOSZMIDER, P. On Banach Spaces of Large Density but Few Operators. 18p.

2000-20 GONÇALVES, D. L. and GUASCHI, J. About the structure of surface pure braid groups. 12p.

2000-21 ARAGONA, J. and SOARES, M. An existence theorem for an analytic first order PDE in the framework of Colombeau's theory. 11p.

2000-22 MARTIN, P. A. The structure of residue class fields of the Colombeau ring of generalized numbers. 21p.

2000-23 BEKKERT, V. and MERKLEN, H.A. Indecomposables in Derived Categories of Gentle Algebras. 18p.

2000-24 COSTA, R. and MURAKAMI, L.S.I. Two Numerical Invariants for Bernstein Algebras. 17p.

2000-25 COELHO, F.U., ASSEM, I. and TREPODE, S. Simply connected tame quasi-tilted algebras. 26p.

2000-26 CARDONA, F. S. P. and WONG, P. N. S. Addition formulas for Relative Reidemeister Numbers. 25p.

2000-27 MELO, SEVERINO T. and MERKLEN, M.I. On a Conjectured Noncommutative Beals-Cordes-type Characterization. 7p.

2000-28 DOKUCHAEV, M. A., JURIAANS, O. S., POLCINO MILIES, F. C. and SINGER, M. L. S. Finite Conjugacy in Algebras and Orders. 17p.

2001-01 KOSZMIDER, P. Universal Matrices and Strongly Unbounded Functions. 18p.

2001-02 JUNQUEIRA, L. and KOSZMIDER, P. On Families of Lindelöf and Related Subspaces of $2^{\mathbb{N}}$. 30p.

2001-03 KOSZMIDER, P. and TALL, F. D. A Lindelöf Space with no Lindelöf Subspace of Size \aleph_1 . 11p.

2001-04 COELHO, F. U. and VARGAS, R. R. S. Mesh Algebras. 20p.

2001-05 FERNANDEZ, R. The equation

$$\frac{\partial u}{\partial t} + H\left(t, x_1, \dots, x_n, u, \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right) = 0$$
and the method of characteristics in the framework of generalized functions. 24p.

2001-06 COSTA, R. and MURAKAMI, L.S.I. Some Properties of the Automorphisms of a Bernstein Algebra. 6p.

2001-07 GORODSKI, C. A class of complete embedded minimal submanifolds in noncompact symmetric spaces. 6p.

2001-08 MARCOS, E.N., MERKLEN, H.A., SÁENZ, C. Standardly Stratified Split and Lower Triangular Algebras. 11p.

2001-09 FURTA, S. and PICCIONE, P. Global Existence of Periodic Travelling Waves of an Infinite Non-Linearly Supported Beam I. Continuous Model. 14p.

2001-10 BARONE-NETTO, A. and FURTA, S. Stability of Trivial Equilibrium Position of two Non-Linearly Coupled Oscillators. 36p.

2001-11 BORSARI, L.D. and GONÇALVES, D.L. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. 17p.

2001-12 DOKUCHAEV, M.A. and GONÇALVES, J.Z. Identities on Units of Algebraic Algebras. 9p.

Nota: Os títulos publicados nos Relatórios Técnicos dos anos de 1980 a 1999 estão à disposição no Departamento de Matemática do IME-USP.
Cidade Universitária "Armando de Salles Oliveira"
Rua do Matão, 1010 - Cidade Universitária
Caixa Postal 66281 - CEP 05315-970