A Lindelof space with no Lindelof subspace of size 'N IND.1' (2001)
- Authors:
- Autor USP: KOSZMIDER, PIOTR BOLESLAW - IME
- Unidade: IME
- Subjects: LÓGICA MATEMÁTICA; TEORIA DOS CONJUNTOS
- Language: Inglês
- Imprenta:
-
ABNT
KOSZMIDER, Piotr Boleslaw e TALL, Franklin D. A Lindelof space with no Lindelof subspace of size 'N IND.1'. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/bc541165-d61a-4f72-b688-1f1d09ce1090/1185748.pdf. Acesso em: 04 nov. 2024. , 2001 -
APA
Koszmider, P. B., & Tall, F. D. (2001). A Lindelof space with no Lindelof subspace of size 'N IND.1'. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/bc541165-d61a-4f72-b688-1f1d09ce1090/1185748.pdf -
NLM
Koszmider PB, Tall FD. A Lindelof space with no Lindelof subspace of size 'N IND.1' [Internet]. 2001 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/directbitstream/bc541165-d61a-4f72-b688-1f1d09ce1090/1185748.pdf -
Vancouver
Koszmider PB, Tall FD. A Lindelof space with no Lindelof subspace of size 'N IND.1' [Internet]. 2001 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/directbitstream/bc541165-d61a-4f72-b688-1f1d09ce1090/1185748.pdf - Applications of P-functions
- On the existence of strong chains in ´p OMEGA IND. 1´/fin
- Forcing minimal extensions of Boolean algebras
- Banach spaces of continuous functions with few operators
- On strong chains of uncountable functions
- A space C(K) where all nontrivial complemented subspaces have big densities
- The interplay between compact spaces and the Banach spaces of their continuous functions
- Kurepa trees and topological non-reflection
- Projections in weakly compactly generated Banach spaces and Chang's conjecture
- On strong chains of uncountable functions
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
1185748.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas