An intrinsic approach to the geodesical connectedness of stationay Lorentzian manifolds (1999)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.4310/cag.1999.v7.n1.a6
- Assunto: GEOMETRIA DIFERENCIAL
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Somerville
- Date published: 1999
- Source:
- Título: Comunications in Analysis and Geometry
- ISSN: 1019-8385
- Volume/Número/Paginação/Ano: v. 7, n. 1, p. 157-197, 1999
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
GIANNONI, Fabio e PICCIONE, Paolo. An intrinsic approach to the geodesical connectedness of stationay Lorentzian manifolds. Comunications in Analysis and Geometry, v. 7, n. 1, p. 157-197, 1999Tradução . . Disponível em: https://doi.org/10.4310/cag.1999.v7.n1.a6. Acesso em: 10 jan. 2026. -
APA
Giannoni, F., & Piccione, P. (1999). An intrinsic approach to the geodesical connectedness of stationay Lorentzian manifolds. Comunications in Analysis and Geometry, 7( 1), 157-197. doi:10.4310/cag.1999.v7.n1.a6 -
NLM
Giannoni F, Piccione P. An intrinsic approach to the geodesical connectedness of stationay Lorentzian manifolds [Internet]. Comunications in Analysis and Geometry. 1999 ; 7( 1): 157-197.[citado 2026 jan. 10 ] Available from: https://doi.org/10.4310/cag.1999.v7.n1.a6 -
Vancouver
Giannoni F, Piccione P. An intrinsic approach to the geodesical connectedness of stationay Lorentzian manifolds [Internet]. Comunications in Analysis and Geometry. 1999 ; 7( 1): 157-197.[citado 2026 jan. 10 ] Available from: https://doi.org/10.4310/cag.1999.v7.n1.a6 - Multiple brake orbits in m-dimensional disks
- On the normal exponential map in singular conformal metrics
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
- Maximally-warped metrics with harmonic curvature
- On the Lie group structure of pseudo-Finsler isometries
Informações sobre o DOI: 10.4310/cag.1999.v7.n1.a6 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
