Metastability for the contact process (1984)
- Autor:
- Autor USP: SCHONMANN, ROBERTO HENRIQUE - IME
- Unidade: IME
- Assunto: PROCESSOS DE MARKOV
- Language: Inglês
- Imprenta:
-
ABNT
SCHONMANN, Roberto Henrique. Metastability for the contact process. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/7f20cbd3-84da-4d31-bc82-9ff11b9f9aab/313574.pdf. Acesso em: 31 dez. 2025. , 1984 -
APA
Schonmann, R. H. (1984). Metastability for the contact process. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/7f20cbd3-84da-4d31-bc82-9ff11b9f9aab/313574.pdf -
NLM
Schonmann RH. Metastability for the contact process [Internet]. 1984 ;[citado 2025 dez. 31 ] Available from: https://repositorio.usp.br/directbitstream/7f20cbd3-84da-4d31-bc82-9ff11b9f9aab/313574.pdf -
Vancouver
Schonmann RH. Metastability for the contact process [Internet]. 1984 ;[citado 2025 dez. 31 ] Available from: https://repositorio.usp.br/directbitstream/7f20cbd3-84da-4d31-bc82-9ff11b9f9aab/313574.pdf - Metaestabilidade para o processo de contacto: extensao dos teoremas basicos e estudo das flutuacoes
- On two correlation inequalities for Potts models
- The contact process on a finite set II
- On the behavior of some cellular automata related to bootstrap percolation
- Large deviations for the contact process and two dimensional percolation
- A new proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter
- Absence of a stationary distribution for the edge process of subcritical oriented percolation in two dimensions
- New proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter
- Finite size scaling behavior of a biased majority rule cellular automation
- Critical points of two dimensional bootstrap percolation like cellular automata
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 313574.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas