Source: Studies in Applied Mathematics. Unidade: IME
Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, SOLITONS, OPERADORES
ABNT
PAVA, Jaime Angulo e YÉPEZ, Andrés Gerardo Pérez. Existence and orbital stability of standing-wave solutions of the nonlinear logarithmic Schrödinger equation on a tadpole graph. Studies in Applied Mathematics, v. 155, n. artigo e70085, p. 1-27, 2025Tradução . . Disponível em: https://doi.org/10.1111/sapm.70085. Acesso em: 27 nov. 2025.APA
Pava, J. A., & Yépez, A. G. P. (2025). Existence and orbital stability of standing-wave solutions of the nonlinear logarithmic Schrödinger equation on a tadpole graph. Studies in Applied Mathematics, 155( artigo e70085), 1-27. doi:10.1111/sapm.70085NLM
Pava JA, Yépez AGP. Existence and orbital stability of standing-wave solutions of the nonlinear logarithmic Schrödinger equation on a tadpole graph [Internet]. Studies in Applied Mathematics. 2025 ; 155( artigo e70085): 1-27.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1111/sapm.70085Vancouver
Pava JA, Yépez AGP. Existence and orbital stability of standing-wave solutions of the nonlinear logarithmic Schrödinger equation on a tadpole graph [Internet]. Studies in Applied Mathematics. 2025 ; 155( artigo e70085): 1-27.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1111/sapm.70085
