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ABSTRACT
This work aims to study some dynamical aspects of the nonlinear logarithmic Schrödinger equation (NLS-log) on
a tadpole graph, namely, a graph consisting of a circle with a half-line attached at a single vertex. By considering
Neumann–Kirchhoff boundary conditions at the junction, we show the existence and the orbital stability of standing
wave solutions with a profile determined by a positive single-lobe state. Via a splitting-eigenvaluemethod, we identify
the Morse index and the nullity index of a specific linearized operator around a positive single-lobe state. To our
knowledge, the results contained in this paper are the first to study the (NLS-log) on tadpole graphs. In particular,
our approach has the prospect of being extended to study stability properties of other bound states for the (NLS-log)
on a tadpole graph or other non-compact metric graph such as a looping-edge graphs.
MATHEMATICS SUBJECT CLASSIFICATION (2020) 35Q51, 35Q55, 81Q35, 35R02 (Primary), 47E05 (Secondary)

1 Introduction

The following Schrödinger model with a logarithmic nonlinearity (NLS-log)

i𝜕𝑡𝑢 + Δ𝑢 + 𝑢𝐿𝑜𝑔|𝑢|2 = 0, (1.1)

where 𝑢 = 𝑢(𝑥, 𝑡) ∶ ℝ𝑁 ×ℝ → ℂ, 𝑁 ≥ 1, was introduced in 1976 by Bialynicki-Birula and Mycielski [20] who proposed
a model of nonlinear wave mechanics to obtain a nonlinear equation which helped to quantify departures from the
strictly linear regime, preserving in any number of dimensions some fundamental aspects of quantum mechanics, such
as separability and additivity of total energy of noninteracting subsystems. The NLS model in (1.1) equation admits

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.
© 2025 The Author(s). Studies in Applied Mathematics published by Wiley Periodicals LLC.

Studies in Applied Mathematics, 2025; 155:e70085
https://doi.org/10.1111/sapm.70085

1 of 27

https://doi.org/10.1111/sapm.70085
https://orcid.org/0000-0002-7453-1782
mailto:angulo@ime.usp.br
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/sapm.70085
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fsapm.70085&domain=pdf&date_stamp=2025-07-28


FIGURE 1 Tadpole graph.

applications to dissipative systems [32], quantum mechanics, quantum optics [21], nuclear physics [31], transport
and diffusion phenomena (e.g., magma transport) [27], open quantum systems, effective quantum gravity, theory of
superfluidity, and Bose–Einstein condensation (see [31, 45], and references therein).
The analysis of nonlinear evolution PDEs models on metric graphs has potential applicability in the analysis of physical
models for modeling particle and wave dynamics in branched structures and networks. Since branched structures and
networks appear in different areas of contemporary physics with many applications in electronics, biology, material
science, and nanotechnology, the development of effective modeling tools is important for the many practical problems
arising in these areas (see [18], and references therein). Nevertheless, real systems can exhibit strong inhomogeneities
due to different nonlinear coefficients in different regions of the spatial domain or to a specific geometry of the spatial
domain. Thus, we will chose a “simple” metric graph-tool such as the tadpole to discover several characteristics of the
NLS-log model.
The NLS-log (𝑁 = 1) on metric graphs has been studied by several authors in the recent years (see [10, 12, 13, 16, 17],
and reference therein). Two basic metric graphs Γ𝑖 , 𝑖 = 0, 1, were examined. For Γ0 = (−∞, 0) ∪ (0,+∞) with boundary
𝛿-or 𝛿′-interactions at the vertex 𝜈 = 0, the existence and orbital (in)stability of standing wave solutions with a Gausson
profile were established. A similar study was also conducted for Γ1 =

⋃𝑁
𝑗=1(0,+∞), known as a star metric graph with the

common vertex 𝜈 = 0.
In this work, we study issues related to the existence and orbital stability of standing wave solutions of the NLS-log (𝑁 = 1)
on a tadpole graph, specifically the vectorial model

i𝜕𝑡𝑈 + Δ𝑈 +𝑈Log|𝑈|2 = 0. (1.2)

defined on a graph comprising a ring with one half-line attached at one vertex point (see Figure 1).
Thus, if in the tadpole graph, the ring is identified by the interval [−𝐿, 𝐿] and the semi-infinite line with [𝐿,+∞), we
obtain a metric graph  with a structure represented by the set 𝔼 = {𝑒0, 𝑒1} where 𝑒0 = [−𝐿, 𝐿] and 𝑒1 = [𝐿,+∞), which
are the edges of  and they are connected at the unique vertex 𝑣 = 𝐿.  is also called a lasso graph (see [28], and references
therein). In this form, we identify any function 𝑈 on  (the wavefunctions) with a collection 𝑈 = (𝑢𝑒)𝑒∈𝐸 of functions
𝑢𝑒 defined on the edge 𝑒 of . In the case of the NLS-log in (1.2), we have 𝑈(𝑥𝑒, 𝑡) = (𝑢𝑒(𝑥𝑒, 𝑡))𝑒∈𝔼 and the nonlinearity
𝑈Log|𝑈|2, acting componentwise, i.e., for instance (𝑈Log|𝑈|2)𝑒 = 𝑢𝑒Log|𝑢𝑒|2. The action of the Laplacian operator Δ on
the tadpole  is given by

−Δ ∶ (𝑢𝑒)𝑒∈𝐸 → (−𝑢′′𝑒 )𝑒∈𝔼. (1.3)

Several domains make the Laplacian operator self-adjoint on a tadpole graph (see [14, 18, 28, 29],). Here, we will consider
a domain of general interest in physical applications. In fact, if we denote a wavefunction 𝑈 on the tadpole graph  as
𝑈 = (Φ,Ψ), with Φ ∶ [−𝐿, 𝐿] → ℂ and Ψ ∶ [𝐿,+∞) → ℂ, we define the following domains for −Δ:

𝐷𝑍 = {𝑈 ∈ 𝐻2() ∶ Φ(𝐿) = Φ(−𝐿) = Ψ(𝐿), and, Φ′(𝐿) − Φ′(−𝐿) = Ψ′(𝐿+) + 𝑍Ψ(𝐿)}, (1.4)

with 𝑍 ∈ ℝ and for any 𝑛 ≥ 0, 𝑛 ∈ ℕ,
𝐻𝑛() = 𝐻𝑛(−𝐿, 𝐿) ⊕ 𝐻𝑛(𝐿,+∞).

The boundary conditions in (1.4) are called of 𝛿-interaction type if 𝑍 ≠ 0, and of flux-balanced or Neumann–Kirchhoff
condition if 𝑍 = 0 (with always continuity at the vertex). It is not difficult to see that (−Δ,𝐷𝑍)𝑍∈ℝ represents a one-
parameter family of self-adjoint operators on the tadpole graph . We note that it is possible determine other domains
where the Laplacian is self-adjoint on a tadpole (see [18]). In particular, using the approach in Angulo&Mun𝑜̄z [14], we
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FIGURE 2 A positive single-lobe state profile for the NLS-log model on .

can obtain domains that can be characterized by the following family of 6-parameters of boundary conditions

Φ(−𝐿) = Φ(𝐿), (1 −𝑚3)Φ(𝐿) = 𝑚4Ψ(𝐿) +𝑚5Ψ′(𝐿),

Φ′(𝐿) − 2Φ′(−𝐿) = 𝑚1Φ(−𝐿) + 𝐴1Ψ(𝐿) + 𝐴2Ψ′(𝐿) and

Φ′(𝐿) − 𝐴3Ψ′(𝐿) = 𝑚6Φ(−𝐿) +𝑚7Ψ(𝐿),

(1.5)

𝐴1 = 𝑚4𝑚6 −𝑚3𝑚7, 𝐴2 = 𝑚5𝑚6 −
2𝑚3+𝑚7𝑚5𝑚3

𝑚4
and 𝐴3 =

2+𝑚7𝑚5
𝑚4

, 𝑚1,𝑚3,𝑚4,𝑚5,𝑚6,𝑚7 ∈ ℝ and 𝑚4 ≠ 0. Note that
for 𝑚3 = 𝑚5 = 0 and 𝑚4 = 1, we get the so-called 𝛿-interaction conditions in (1.4). Moreover, for 𝑚1 = 𝑚6 = 𝑚7 = 0,
𝑚3 = 1,𝑚4 = 2, and𝑚5 arbitrary, we get the following 𝛿′-interaction type condition on a tadpole graph

Φ′(−𝐿) = Φ′(𝐿) = Ψ′(𝐿), Φ(𝐿) = Φ(−𝐿) and

Ψ(𝐿) = −
𝑚5
2
Ψ′(𝐿).

(1.6)

Now, a problem of general interest is the interaction between standing waves in spatially confined systems and those in
large or unbounded reservoirs (so we can say that a tadpole is a configuration that fulfills these characteristics). Our main
interest here will be to study some dynamics aspects of (1.2) such as the existence and orbital stability of standing wave
solutions given by the profiles𝑈(𝑥, 𝑡) = ei𝑐𝑡Θ(𝑥), with 𝑐 ∈ ℝ,Θ = (𝜙, 𝜓) ∈ 𝐷𝑍 , 𝑍 = 0, and satisfying the NLS-log vectorial
equation

−ΔΘ + 𝑐Θ − ΘLog(|Θ|2) = 0. (1.7)

More explicitly, for 𝜙 and 𝜓 real-valued we obtain the following system, one on the ring and the other one on the half-line,
respectively,

⎧⎪⎪⎨⎪⎪⎩

−𝜙′′(𝑥) + 𝑐𝜙(𝑥) − Log(𝜙2(𝑥))𝜙(𝑥) = 0, 𝑥 ∈ (−𝐿, 𝐿),
−𝜓′′(𝑥) + 𝑐𝜓(𝑥) − Log(𝜓2(𝑥))𝜓(𝑥) = 0, 𝑥 ∈ (𝐿,+∞),
𝜙(𝐿) = 𝜙(−𝐿) = 𝜓(𝐿),
𝜙′(𝐿) − 𝜙′(−𝐿) = 𝜓′(𝐿+).

(1.8)

The critical challenge in solving (1.8) lies in the component𝜙 on [−𝐿, 𝐿] (we note that explicit profiles for𝜙 are not known).
The component of 𝜓 is given by a translated Gausson-profile (see [11, 23]) of the form

𝜓𝑐(𝑥) = e
𝑐+1
2 e

−(𝑥−𝐿+𝑎)2
2 , 𝑎 ≠ 0, 𝑐 ∈ ℝ, 𝑥 ≥ 𝐿. (1.9)

Among all profiles for (1.8) (see, for instance, Figures 2 and 3 for the case of 𝜙- profiles), we focus on positive single-lobe
states. More precisely, we define (see Figure 2).

Definition 1.1. The standing wave profile Θ = (𝜙, 𝜓) ∈ 𝐷0 is said to be a positive single-lobe state for (1.8) if each
component is positive on every edge of , the maximum of Θ is achieved at a single internal point symmetrically located
on [−𝐿, 𝐿], and 𝜙 is monotonically decreasing on [0, 𝐿]. Moreover, 𝜓 is strictly decreasing on [𝐿,+∞).
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The study of ground or bound states on general metric graphs for the NLS model with a polynomial nonlinearity

i𝜕𝑡𝑈 + Δ𝑈 + |𝑈|2𝑝𝑈 = 0, 𝑝 > 0 (1.10)

has been investigated in [1–4, 8, 9, 22, 33–35, 40, 41, 43]. To our knowledge, the results contained in this paper are the first
in studying the NLS-log on tadpole graphs.
Our focus in thiswork is to study the existence and the orbital stability for theNLS-logmodel of positive single-lobe states in
the case 𝑍 = 0 (for the case 𝑍 ≠ 0, we refer the reader to Section 7). For the existence, we use tools from dynamical systems
theory for orbits on the plane, based on the period function introduced in [34, 35]. To our knowledge, this approach has
not been applied in the literature to logarithmic nonlinearities, and a non-trivial analysis will be required. For the stability,
we follow the abstract stability framework by Grillakis et al. [30]. For clarity, we outline the main steps of this framework
for standing wave solutions for NLS-log models on a tadpole graph (see Theorem A.7 in the Appendix). Subsequently, we
will present our main results.
To begin, we note that the basic symmetry associated with the NLS-log model (1.2) on tadpole graphs is the phase
invariance: if 𝑈 is a solution of (1.2), then ei𝜃𝑈 is also a solution for any 𝜃 ∈ [0, 2𝜋). Thus, we define orbital stability
for (1.2) as follows (see [30]).

Definition 1.2. The standing wave 𝑈(𝑥, 𝑡) = ei𝑐𝑡(𝝓(𝑥), 𝝍(𝑥)) is said to be orbitally stable in a Banach space 𝑋 if for any
𝜀 > 0 there exists 𝜂 > 0with the following property: if𝑈0 ∈ 𝑋 satisfies ||𝑈0 − (Φ,Ψ)||𝑋 < 𝜂, then the solution𝑈(𝑡) of (1.2)
with 𝑈(0) = 𝑈0 exists for any 𝑡 ∈ ℝ and

sup
𝑡∈ℝ

inf
𝜃∈[0,2𝜋)

||𝑈(𝑡) − ei𝜃(𝝓, 𝝍)||𝑋 < 𝜀.

Otherwise, the standing wave 𝑈(𝑥, 𝑡) = ei𝑐𝑡(𝝓(𝑥), 𝝍(𝑥)) is said to be orbitally unstable in 𝑋.

The space 𝑋 in Definition 1.2 for the model (1.2) will depend on the domain of the action of −Δ, namely,𝐷0, and a specific
weighted space. Indeed, we will consider the following spaces:

() = {
(𝑓, 𝑔) ∈ 𝐻1() ∶ 𝑓(−𝐿) = 𝑓(𝐿) = 𝑔(𝐿)} “continuous energy-space”, (1.11)

and the Banach spaces𝑊() and𝑊 defined by

𝑊() = {(𝑓, 𝑔) ∈ () ∶ |𝑔|2Log|𝑔|2 ∈ 𝐿1(𝐿,+∞)}
𝑊 = {(𝑓, 𝑔) ∈ () ∶ 𝑥𝑔 ∈ 𝐿2(𝐿,+∞)}. (1.12)

We note that 𝑊 ⊂ 𝑊() (see Lemma 2.1). Due to our local stability analysis (not variational type, see Section 7 for
discussion on this approach), we will consider 𝑋 =𝑊 in Definition 1.2.
Next, we consider the following two functionals associated with (1.2):

𝐸(𝑈) = ‖∇𝑈‖2
𝐿2() − ∫

𝐿

−𝐿
|𝑓1|2Log(|𝑓1|2)𝑑𝑥 − ∫

+∞

𝐿

|𝑓2|2Log(|𝑓2|2)𝑑𝑥, (energy) (1.13)

and

𝑄(𝑈) = ‖𝑈‖2
𝐿2(), (mass) (1.14)

where 𝑈 = (𝑓1, 𝑓2). These functionals satisfy 𝐸,𝑄 ∈ 𝐶1(𝑊() ∶ ℝ) (see [23] or Proposition 6.3 in [10]) and, at least
formally, 𝐸 is conserved by the flow of (1.2). The use of the space𝑊() is because 𝐸 fails to be continuously differentiable
on () (a proof of this can be based on the ideas in [23]). Now, as our stability theory is based on the framework of Grillakis
et al. [30], 𝐸 needs to be twice continuously differentiable at the profile Θ ∈ 𝐷0. To satisfy this condition, we introduced
the space 𝑊. Moreover, this space naturally appears in the following study of the linearization of the action functional
around Θ. We note that 𝐸,𝑄 ∈ 𝐶1(𝑊).

4 of 27 Studies in Applied Mathematics, 2025
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Now, for a fixed 𝑐 ∈ ℝ, let 𝑈𝑐(𝑥, 𝑡) = ei𝑐𝑡(𝝓𝑐(𝑥), 𝝍𝑐(𝑥)) be a standing wave solution for (1.2) with (𝜙𝑐, 𝜓𝑐) ∈ 𝐷0 being a
positive single-lobe state. Then, for the action functional

𝐒(𝑈) = 𝐸(𝑈) − (𝑐 + 1)𝑄(𝑈), 𝑈 ∈ 𝑊, (1.15)

we have 𝐒′(𝜙𝑐, 𝜓𝑐) = 𝟎. Next, for 𝑈 = 𝑈1 + i𝑈2 and𝑊 =𝑊1 + i𝑊2, where the functions 𝑈𝑗 ,𝑊𝑗 , 𝑗 = 1, 2, are real. The
second variation of 𝐒 in (𝜙𝑐, 𝜓𝑐) is

𝐒′′(𝜙𝑐, 𝜓𝑐)(𝑈,𝑊) = ⟨1𝑈1,𝑊1⟩ + ⟨2𝑈2,𝑊2⟩, (1.16)

where the two 2 × 2-diagonal operators 1 and 2 are given for
1 = diag

(
−𝜕2𝑥 + (𝑐 − 2) − Log|𝜙𝑐|2,−𝜕2𝑥 + (𝑐 − 2) − Log|𝜓𝑐|2)

2 = diag
(
−𝜕2𝑥 + 𝑐 − Log|𝜙𝑐|2,−𝜕2𝑥 + 𝑐 − Log|𝜓𝑐|2) (1.17)

These operators are self-adjoint with domain (see Theorem 3.1)

 ∶= {(𝑓, 𝑔) ∈ 𝐷0 ∶ 𝑥2𝑔 ∈ 𝐿2([𝐿,+∞))}.
Since (𝜙𝑐, 𝜓𝑐) ∈  and satisfies system (1.8), 2(𝜙𝑐, 𝜓𝑐)𝑡 = 𝟎, so the kernel of 2 is non-trivial. Moreover,⟨1(𝜙𝑐, 𝜓𝑐)𝑡, (𝜙𝑐, 𝜓𝑐)𝑡⟩ < 0 implies that the Morse index of 1, 𝑛(1), satisfies 𝑛(1) ≧ 1. Next, from [30] we know that
the Morse index and the nullity index of the operators 1 and 2 are a fundamental step in deciding about the orbital
stability of standing wave solutions. For the case of the profile (𝝓𝑐, 𝝍𝑐) being a positive single-lobe state, our main results
are the following:

Theorem1.3.Consider the self-adjoint operator (1,) in (1.17) determined by the positive single-lobe state (𝝓𝑐, 𝝍𝑐). Then,
1. Perron–Frobenius property: let 𝛽0 < 0 be the smallest eigenvalue of1 with associated eigenfunction (𝑓𝛽0, 𝑔𝛽0). Then, 𝑓𝛽0
is positive and even on [−𝐿, 𝐿], and 𝑔𝛽0(𝑥) > 0 with 𝑥 ∈ [𝐿,+∞),

2. 𝛽0 is simple,
3. the Morse index of 1 is one,
4. The kernel of 1 on is trivial.

Theorem1.4.Consider the self-adjoint operator (2,) in (1.17) determined by the positive single-lobe state (𝝓𝑐, 𝝍𝑐). Then,
1. the kernel of 2, 𝑘𝑒𝑟(2), satisfies 𝑘𝑒𝑟(2) = 𝑠𝑝𝑎𝑛{(𝝓𝑐, 𝝍𝑐)}.
2. 2 is a non-negative operator, 2 ≧ 0.
The proof of Theorem 1.3 will be based on a splitting eigenvalue method applied to 1 ∶= diag(0

1
,1
1
) in (1.17) on a

tadpole graph (see Lemma 4.4). More precisely, we reduce the eigenvalue problem associated with 1 with domain 
to two classes of eigenvalue problems, one with periodic boundary conditions on [−𝐿, 𝐿] for 0

1
and the other one with

Neumann boundary conditions on = [𝐿,+∞) for 1
1
. Thus, by using tools of the extension theory of Krein–von Neumann

for symmetric operators, the theory of real coupled self-adjoint boundary conditions on [−𝐿, 𝐿] and the Sturm comparison
theorem, will lead to our results.
Our orbital stability result is the following:

Theorem 1.5. Consider 𝑍 = 0 in (1.8). Then, there exists a 𝐶1-mapping 𝑐 ∈ ℝ → Θ𝑐 = (𝜙𝑐, 𝜓𝑐) of positive single-lobe states
on . Moreover, for 𝑐 ∈ ℝ, the orbit

{𝑒𝑖𝜃Θ𝑐 ∶ 𝜃 ∈ [0, 2𝜋)}

is stable.

The proof of Theorems 1.3 and 1.4 are given in Section 4. The orbital stability statement follows from Theorems 1.3 and 1.4
and the abstract stability framework by Grillakis et al. in [30]. For the convenience of the reader, we provide an adaptation
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FIGURE 3 A positive two-lobe state profile on a tadpole graph.

of the abstract results in [30] to the case of tadpole graphs in TheoremA.7 (the Appendix).We note that themain challenge
in applying Theorem A.7 lies in spectral analysis, as the Vakhito–Kolokolov condition 𝑑

𝑑𝑐
‖(𝜙𝑐, 𝜓𝑐)‖2 > 0 is essentially

trivial for the NLS-log model. Definition 1.2 requires a priori information about the local/global well-posedness of the
Cauchy problem for (1.2), which is established in Section 2 for the space𝑊 in (2.1).
The existence of a 𝐶1-mapping for positive single-lobe states in Theorem 1.5 relies on the dynamical systems theory for
planar orbits via the period function for second-order differential equations (see [8, 9, 33–35, 40], and reference therein)
We would like to point out that our approach for studying positive single-lobe states for the NLS-log on a tadpole has
prospects of being used to study other standing wave profiles, such as positive two-lobe states (see [9] and Figure 3) or the
NLS-log on othersmetric graphs such as looping edge graphs, a graph consisting of a circle with several half-lines attached
at a single vertex (see Figure 7 in Section 7).
The paper is organized as follows. In Section 2, we establish local and global well-posedness results for the NLS-log model
on a tadpole graph. In Section 3, we show the linearization of the NLS-log around a positive single-lobe state and its
relation to the self-adjoint operators1,2. In Section 4, we show Theorems 1.3 and 1.4 via our splitting eigenvalue lemma
(Lemma 4.4). In Section 5, we provide the proof of the existence of positive single-lobe states and their stability under
the NLS-log flow. In the Appendix, we briefly outline tools from the Krein–von Neumann extension theory, a Perron–
Frobenius property for 𝛿-interaction Schrödinger operators on the line, and the orbital stability criterion from Grillakis
et al. [30] adapted to our framework.

Notation. Let −∞ ≤ 𝑎 < 𝑏 ≤ +∞. We denote by 𝐿2(𝑎, 𝑏) the Hilbert space equipped with the inner product (𝑢, 𝑣) =
∫ 𝑏
𝑎
𝑢(𝑥)𝑣(𝑥)𝑑𝑥. By 𝐻𝑛(Ω) we denote the classical Sobolev spaces on Ω ⊂ ℝ with the usual norm. We denote by  the

tadpole graph parameterized by the set of edges 𝔼 = {𝑒0, 𝑒1}, where 𝑒0 = [−𝐿, 𝐿] and 𝑒1 = [𝐿,+∞), and attached to the
common vertex 𝜈 = 𝐿. On the graph , we define the spaces

𝐿𝑝() = 𝐿𝑝(−𝐿, 𝐿) ⊕ 𝐿𝑝(𝐿,+∞), 𝑝 > 1,

with the natural norms. Also, for 𝑈 = (𝑢1, 𝑔1), 𝑉 = (𝑣1, ℎ1) ∈ 𝐿2(), the inner product on 𝐿2() is defined by

⟨𝑈,𝑉⟩ = ∫
𝐿

−𝐿
𝑢1(𝑥)𝑣1(𝑥)𝑑𝑥 + ∫

+∞

𝐿

𝑔1(𝑥)ℎ1(𝑥)𝑑𝑥.

Let 𝐴 be a closed densely defined symmetric operator in the Hilbert space 𝐻. The domain of 𝐴 is denoted by 𝐷(𝐴). The
deficiency indices of𝐴 are denoted by 𝑛±(𝐴) ∶= dim𝑘𝑒𝑟(𝐴∗ ∓ i𝐼), with𝐴∗ denoting the adjoint operator of𝐴. The Morse
index of 𝐴, denoted by 𝑛(𝐴), is the number of negative eigenvalues counting multiplicities.

2 Global Well-Posedness in𝑾

In this section, we show that the Cauchy problem associated with the NLS-log model on a tadpole graph is globally well-
posed in the space𝑊. FromDefinition (1.2), this information is crucial for the stability theory. We start with the following
technical result.

Lemma 2.1. Let𝑊() and𝑊 be the Banach spaces defined by

𝑊() = {(𝑓, 𝑔) ∈ () ∶ |𝑔|2Log|𝑔|2 ∈ 𝐿1(𝐿,+∞)},
𝑊 = {(𝑓, 𝑔) ∈ () ∶ 𝑥𝑔 ∈ 𝐿2(𝐿,+∞)}. (2.1)
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Then,𝑊 ⊂ 𝑊().
Proof.
1. Let us start by proving that𝑊 ⊂ 𝐿1(). For (𝜑, 𝜉) ∈ 𝑊 and the Cauchy–Schwarz inequality we have

∫
𝐿

−𝐿
|𝜑|𝑑𝑥 + ∫

+∞

𝐿

|𝜉|𝑑𝑥 = ∫
𝐿

−𝐿
|𝜑|𝑑𝑥 + ∫

+∞

𝐿

𝑥|𝜉| 1
𝑥
𝑑𝑥

≤ 2𝐿 sup
[−𝐿,𝐿]

|𝜑| +(
∫

+∞

𝐿

𝑥2|𝜉|2𝑑𝑥)
1
2
(
∫

+∞

𝐿

1

𝑥2
𝑑𝑥

) 1
2

< ∞.

2. Let again (𝜑, 𝜉) ∈ 𝑊, then

∫
+∞

𝐿

|𝜉|2|Log|𝜉||𝑑𝑥 = ∫{𝑥∈[𝐿,+∞)∶|𝜉(𝑥)|<1} |𝜉|2|Log|𝜉||𝑑𝑥 + ∫{𝑥∈[𝐿,+∞)∶|𝜉(𝑥)|≥1} |𝜉|2|Log|𝜉||𝑑𝑥. (2.2)

Note also that

|Log|𝜉(𝑥)|| < 1|𝜉(𝑥)| for |𝜉(𝑥)| < 1, and |Log|𝜉(𝑥)|| < |𝜉(𝑥)| for |𝜉(𝑥)| ≥ 1. (2.3)

Since 𝜉 ∈ 𝐻1([𝐿,+∞)), there exists 𝑘 > 𝐿 such that |𝜉| < 1 for [𝐿,+∞) ⧵ [𝐿, 𝑘]. Thus, from (2.2), (2.3), and the
inclusion𝑊 ⊂ 𝐿1() we get

∫
+∞

𝐿

|𝜉|2|𝐿𝑜𝑔|𝜉||𝑑𝑥 ≤ ∫
{𝑥∈(𝑘,+∞)∶|𝜉|<1} |𝜉|𝑑𝑥 + ∫

{𝑥∈[𝐿,𝑘]∶|𝜉|<1} |𝜉|𝑑𝑥 + ∫
{𝑥∈[𝐿,𝑘]∶|𝜉|≥1} |𝜉|3𝑑𝑥

≤ ∫
{𝑥∈(𝑘,+∞)∶|𝜉|<1} |𝜉|𝑑𝑥 + (𝑘 − 𝐿) + (𝑘 − 𝐿) sup[𝐿,𝑘]

|𝜉|3 < ∞.

The assertion is proved. □

Theorem 2.2. For any 𝑈0 ∈ 𝑊, there is a unique solution 𝑈 ∈ 𝐶(ℝ,𝑊) of (1.2) such that 𝑈(0) = 𝑈0. Furthermore, the
conservation of energy and mass hold, i.e., for any 𝑡 ∈ ℝ, we have 𝐸(𝑈(𝑡)) = 𝐸(𝑈0) and 𝑄(𝑈(𝑡)) = 𝑄(𝑈0).

Proof. The idea of the proof is to use the strategy proposed in [25]-Section 2 (see also [24, 26]) and adapted to the NLS-
log model on the tadpole graph. As the analysis follows the Cazenave’s framework which involves multiples steps, we
highlight the key modifications for our case. In this way, we introduce the “reduced” Cauchy problem{

𝑖𝜕𝑡𝑈𝑛 + Δ𝑈𝑛 +𝑈𝑛𝐹𝑛(|𝑈𝑛|2) = 0,
𝑈𝑛(0) = 𝑈0 ∈ 𝑊,

(2.4)

where for𝑈𝑛 = (𝑢𝑛, 𝑣𝑛),𝑈𝑛𝐹𝑛(|𝑈𝑛|2) = (𝑢𝑛𝑓𝑛(|𝑢𝑛|2), 𝑣𝑛𝑓𝑛(|𝑣𝑛|2)), 𝑓𝑛(𝑠) = inf {𝑛, sup{−𝑛, 𝑓(𝑠)}}, and 𝑓(𝑠) = Log(𝑠), 𝑠 >
0. Initially, we show that the problem in (2.4) has a unique global solution for any 𝑈0 ∈ () and fixed 𝑛. To use
Theorem 3.3.1 in [24], define the mapping 𝑔𝑛 ∶ 𝐿2() → 𝐿2(), 𝑔𝑛(𝑈) = 𝑈𝐹𝑛(|𝑈|2), which is Lipschitz continuous on
bounded sets of 𝐿2() (since each 𝑓𝑛 is Lipschitz on ℝ+). For 𝑝𝑛(𝑠) = ∫ 𝑠

0
𝑓𝑛(𝑠)𝑑𝑠, define 𝑃𝑛(𝑤) = 𝑝𝑛(|𝑤|2), yielding

𝑃′𝑛(𝑤) = |𝑤|𝑓𝑛(|𝑤|2) formally. For 𝐺𝑛(𝑈) = (𝑃𝑛(𝑢), 𝑃𝑛(𝑣)) with 𝑈 = (𝑢, 𝑣) ∈ (), we get 𝐺′𝑛(𝑈) = 𝑔𝑛(𝑈) (where the
derivative of 𝐺𝑛 is computed component-wise). Since Δwith domain 𝐷0 is self-adjoint and non-positive operator in 𝐿2()
(see Remark 2.3), Theorem 3.3.1 implies that for any 𝑈0 ∈ () there exists a unique global solution 𝑈𝑛 of (2.4) such that
𝑈𝑛 ∈ 𝐶(ℝ, ()) ∩ 𝐶1(ℝ, ()′). Furthermore, for (2.4), the conservation of energy and charge hold, i.e., for all 𝑡 ∈ [−𝑇, 𝑇]

𝑄(𝑈𝑛(𝑡)) = ‖𝑈𝑛(𝑡)‖2𝐿2() = ‖𝑈0‖2𝐿2(), 𝐸𝑛(𝑈𝑛(𝑡)) = 𝐸𝑛(𝑈0),

𝐸𝑛(𝑈) = ‖∇𝑈‖2
𝐿2() − ∫ 𝐿−𝐿 𝑃𝑛(|𝑢|2)𝑑𝑥 − ∫ +∞

𝐿
𝑃𝑛(|𝑣|2)𝑑𝑥, 𝑈 = (𝑢, 𝑣),

(2.5)
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and so we also obtain that

‖𝑈𝑛‖𝐿∞([−𝑇,𝑇],()) ≦ 𝐶, for all 𝑛. (2.6)

Note that the last statement is a consequence of 𝑈0 ∈ 𝑊 ⊂ 𝑊() by Lemma 2.1 and from Lemmas 2.3.2, 2.3.3, and 2.3.4
in [25]. Now, for 𝑅 = {(𝑓, 𝑔) ∈ 𝐿2((−𝐿, 𝐿) × (𝐿, 𝑅)) ∶ 𝑓(−𝐿) = 𝑓(𝐿) = 𝑔(𝐿)} with 𝑅 > 𝐿, we consider the Hilbert spaces
𝑅 = {(𝑝, 𝑞) ∶ (𝑝, 𝑞) ∈ (𝐻1(−𝐿, 𝐿) ×𝐻1(𝐿, 𝑅)) ∩ 𝑅} and the dual space of 𝑅,  ′𝑅. We note that as for any 𝑎, 𝑏 ∈ ℝ, the
embedding𝐻1(𝑎, 𝑏) ↪ 𝐶([𝑎, 𝑏]) is compact, we get initially that 𝑅 is closed in𝐻1(−𝐿, 𝐿) ×𝐻1(𝐿, 𝑅) and so 𝑅 is a Hilbert
space. Further, from the embedding relations 𝑅 ↪

compact
𝑅 ↪  ′𝑅 follows by the Aubin–Lions theorem ([38]) implies that

 = {𝐹 ∶ 𝐹 ∈ 𝐿2([−𝑇, 𝑇], 𝑅), 𝐹′ = 𝑑

𝑑𝑡
𝐹 ∈ 𝐿2([−𝑇, 𝑇],  ′𝑅)},

is a Banach space compactly embedded in 𝐿2([−𝑇, 𝑇],𝑅). By following a similar analysis to Lemma 2.3.5 in [25] (see
also Lemma 9.3.6 in [24]), we get that𝑈𝑛𝑘 → 𝑈 in 𝐿∞([0, 𝑇], ()) weak-⋆. Therefore, we get that𝑈 is a solution of (1.2)
in the sense of distributions. Moreover, the conservation of charge 𝑄 in (1.14) holds and so 𝑈𝑛𝑘(𝑡) → 𝑈(𝑡) strong in  =
{(𝑓, 𝑔) ∈ 𝐿2((−𝐿, 𝐿) × (𝐿,+∞)) ∶ 𝑓(−𝐿) = 𝑓(𝐿) = 𝑔(𝐿)}. We have also that energy 𝐸 in (1.13) is conserved via a standard
monotonicity argument (see section 2.4 in [25]). Thus, the inclusion 𝑈 ∈ 𝐶(ℝ; (()) follows from conservation laws.
Lastly, for 𝑈0 = (𝑔, ℎ), the condition 𝑥ℎ ∈ 𝐿2(𝐿,+∞) implies 𝑥𝑣 ∈ 𝐿2(𝐿,+∞) (for the solution 𝑈 = (𝑢, 𝑣)), repeating the
argument of Lemma 7.6.2 in [26]. This finishes the proof. □

Remark 2.3. By considering (−Δ𝑍,𝐷𝑍), with −Δ𝑍 = −Δ and 𝐷𝑍 in (1.4), it is possible to see the following (see [15, 40]):
for every 𝑍 ∈ ℝ, the essential spectrum of the self-adjoint operator −Δ𝑍 is purely absolutely continuous and 𝜎ess(−Δ𝑍) =
𝜎ac(−Δ𝑍) = [0,+∞). If 𝑍 > 0, then −Δ𝑍 has exactly one negative eigenvalue, i.e., its point spectrum is 𝜎pt(−Δ𝑍) = {−𝜚2𝑍 },
where 𝜚

𝑍
> 0 is the only positive root of the transcendental equation

𝜚(2 tanh (𝜚𝐿) + 1) − 𝑍 = 0,

and with the eigenfunction

𝚽𝑍 =
⎛⎜⎜⎝
cosh(𝑥𝜚

𝑍
), 𝑥 ∈ [−𝐿, 𝐿]

e−𝑥𝜚𝑍 , 𝑥 ∈ [𝐿,+∞)

⎞⎟⎟⎠ .
If 𝑍 ≦ 0, then −Δ𝑍 has no point spectrum, 𝜎𝑝𝑡(−Δ𝑍) = ∅. Therefore, for 𝑍 = 0 we have that −Δ𝑍 is a non-
negative operator.

3 Linearization of NLS-Log Equation

For fixed 𝑐 ∈ ℝ, let 𝑈(𝑥, 𝑡) = ei𝑐𝑡Θ𝑐(𝑥) be a standing wave solution for (1.2) with Θ𝑐(𝑥) = (𝜙𝑐(𝑥), 𝜓𝑐(𝑥)) ∈ 𝐷0 being a
positive single-lobe state. We consider the action functional 𝑆𝑐 = 𝐸 + (𝑐 + 1)𝑄, thus Θ𝑐 is a critical point of 𝑆𝑐. Next, we
determine the linear operator associated with the second variation of 𝑆𝑐 calculated at Θ𝑐, which is crucial for applying
the approach in [30]. To express 𝑆′′𝑐 (Θ𝑐), it is convenient to split 𝑢, 𝑣 ∈ 𝑊 into real and imaginary parts: 𝑢 = 𝑢1 + i𝑢2,
𝑣 = 𝑣1 + i𝑣2. Then, we get 𝑆′′𝑐 (Θ𝑐)(𝑢, 𝑣) can be formally rewritten as

𝑆′′𝑐 (Θ𝑐)(𝑢, 𝑣) = 𝐵1(𝑢1, 𝑣1) + 𝐵2(𝑢2, 𝑣2), (3.1)

8 of 27 Studies in Applied Mathematics, 2025
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where

𝐵1((𝑓, 𝑔), (ℎ, 𝑞)) =∫
𝐿

−𝐿
𝑓′ℎ′𝑑𝑥 + ∫

+∞

𝐿

𝑔′𝑞′𝑑𝑥 + ∫
𝐿

−𝐿
𝑓ℎ[𝑐 − 2 − Log|𝜙𝑐|2]𝑑𝑥

+ ∫
+∞

𝐿

𝑔𝑞[(𝑥 − 𝐿 + 𝑎)2 − 3]𝑑𝑥,

𝐵2((𝑓, 𝑔), (ℎ, 𝑞)) =∫
𝐿

−𝐿
𝑓′ℎ′𝑑𝑥 + ∫

+∞

𝐿

𝑔′𝑞′𝑑𝑥 + ∫
𝐿

−𝐿
𝑓ℎ[𝑐 − Log|𝜓𝑐|2]𝑑𝑥 + ∫

+∞

𝐿

𝑔𝑞[(𝑥 − 𝐿 + 𝑎)2 − 1]𝑑𝑥,

(3.2)

and dom (𝐵𝑖) =𝑊 ×𝑊, 𝑖 ∈ {1, 2}. Note that the forms𝐵𝑖 , 𝑖 ∈ {1, 2}, are bilinear bounded frombelowand closed. Therefore,
by the first representation theorem (see [36], Chapter VI, Section 2.1), they define operators ̃1 and ̃2 such that for
𝑖 ∈ {1, 2}

dom(̃𝑖) = {𝑣 ∈ 𝑊 ∶ ∃𝑤 ∈ 𝐿2() s.t. ∀𝑧 ∈ 𝑊,𝐵𝑖(𝑣, 𝑧) = ⟨𝑤, 𝑧⟩}
̃𝑖𝑣 = 𝑤.

(3.3)

Theorem 3.1. The operators ̃1 and ̃2 determined in (3.3) are given by
̃1 = diag

(
−𝜕2𝑥 + (𝑐 − 2) − Log|𝜙𝑐|2,−𝜕2𝑥 + (𝑥 − 𝐿 + 𝑎)2 − 3)

̃2 = diag
(
−𝜕2𝑥 + 𝑐 − Log|𝜙𝑐|2,−𝜕2𝑥 + (𝑥 − 𝐿 + 𝑎)2 − 1)

on the domain = {(𝑓, 𝑔) ∈ 𝐷0 ∶ 𝑥2𝑔 ∈ 𝐿2(𝐿,+∞)}. Thus, ̃𝑖 = 𝑖 defined in (1.17).
Proof. Since the proof for ̃2 is similar to the one for ̃1, we deal with ̃1. Let 𝐵1 = 𝐵0 + 𝐵1, where 𝐵0 ∶ () × () → ℝ

and 𝐵1 ∶ 𝑊 ×𝑊 → ℝ are defined by

𝐵0((𝑓, 𝑔), (ℎ, 𝑞)) = ⟨(𝑓′, 𝑔′), (ℎ′, 𝑞′)⟩, 𝐵1((𝑓, 𝑔), (ℎ, 𝑞)) = ⟨𝑉1(𝑓, 𝑔), (ℎ, 𝑞)⟩, (3.4)

and𝑉1(𝑓, 𝑔) = ([𝑐 − 2 − Log|𝜙𝑐(𝑥)|2]𝑓, [(𝑥 − 𝐿 + 𝑎)2 − 3]𝑔). We denote by0 (resp.1) the self-adjoint operator on 𝐿2()
associated (by the first representation theorem) with 𝐵0 (resp. 𝐵1). Thus,

dom(0) = {𝑣 ∈ () ∶ ∃𝑤 ∈ 𝐿2() s.t. ∀𝑧 ∈ (), 𝐵0(𝑣, 𝑧) = ⟨𝑤, 𝑧⟩}
0𝑣 = 𝑤.

We claim that 0 is the self-adjoint operator

0 = −Δ = − 𝑑
2

𝑑𝑥2
, dom(−Δ) = 𝐷0.

Indeed, let 𝑣 = (𝑣1, 𝑣2) ∈ 𝐷0 and 𝑤 = −𝑣′′ ∈ 𝐿2(). Then for every 𝑧 = (𝑧1, 𝑧2) ∈ () and using integration by parts, we
have

𝐵0(𝑣, 𝑧) = (𝑣′, 𝑧′) = ∫
𝐿

−𝐿
𝑣′
1
𝑧′
1
𝑑𝑥 + ∫

+∞

𝐿

𝑣′
2
𝑧′
2
𝑑𝑥

= 𝑣′
1
(𝐿)𝑧1(𝐿) − 𝑣′1(−𝐿)𝑧1(−𝐿) − 𝑣

′
2
(𝐿)𝑧2(𝐿) − ∫

𝐿

−𝐿
𝑣′′
1
𝑧′
1
𝑑𝑥 − ∫

+∞

𝐿

𝑣′′
2
𝑧′
2
𝑑𝑥

= (−𝑣′′, 𝑧) = (𝑤, 𝑧).

Thus, 𝑣 ∈ dom (0) and 0𝑣 = 𝑤 = −𝑣′′ = −Δ𝑣. Hence, −Δ ⊂ 0. Since −Δ is self-adjoint on 𝐷0, 0 = −Δ.
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Again, by the first representation theorem,

dom(1) = {𝑣 ∈ 𝑊 ∶ ∃𝑤 ∈ 𝐿2() s.t. ∀𝑧 ∈ 𝑊,𝐵1(𝑣, 𝑧) = ⟨𝑤, 𝑧⟩}
1𝑣 = 𝑤.

Note that 1 is the self-adjoint extension of the following multiplication operator for 𝑢 = (𝑓, 𝑔)

𝑢 = 𝑉1(𝑓, 𝑔), dom() = {𝑢 ∈ () ∶ 𝑉1𝑢 ∈ 𝐿2()}.
Indeed, for 𝑣 ∈ dom ()we have 𝑣 ∈ 𝑊, and we define𝑤 = 𝑉1𝑣 ∈ 𝐿2(). Then for every 𝑧 ∈ 𝑊 we get 𝐵1(𝑣, 𝑧) = ⟨𝑤, 𝑧⟩.
Thus, 𝑣 ∈ dom (1) and 1𝑣 = 𝑤 = 𝑉1𝑣. Hence, ⊂ 1. Since is self-adjoint, 1 = . The proof of the theorem is
complete. □

4 Proof of Theorems 1.3 and 1.4

Let us consider one a priori positive single-lobe state (𝜙𝑐, 𝜓𝑐) solution for (1.8) with 𝑐 ∈ ℝ. For convenience, we denote
𝜙 = 𝜙𝑐 and 𝜓 = 𝜓𝑐. Thus, the linearized operator 1 in Theorem 3.1 becomes as

1 = diag(−𝜕2𝑥 + (𝑐 − 2) − Log|𝜙|2,−𝜕2𝑥 + (𝑐 − 2) − Log|𝜓|2) (4.1)

with domain = {(𝑓, 𝑔) ∈ 𝐷0 ∶ 𝑥2𝑔 ∈ 𝐿2([𝐿,+∞))}.
Next, for (𝑓, 𝑔) ∈  define ℎ(𝑥) = 𝑔(𝑥 + 𝐿) for 𝑥 > 0. Then ℎ(0) = 𝑔(𝐿) and ℎ′(0) = 𝑔′(𝐿). Therefore, the eigenvalue
problem 1(𝑓, 𝑔)𝑡 = 𝜆(𝑓, 𝑔)𝑡 is equivalent to

⎧⎪⎨⎪⎩
0,1𝑓(𝑥) = 𝜆𝑓(𝑥), 𝑥 ∈ (−𝐿, 𝐿),
1,1ℎ(𝑥) = 𝜆ℎ(𝑥), 𝑥 ∈ (0,+∞),
(𝑓, ℎ) ∈ 𝐷+,

(4.2)

where

0,1 = −𝜕2𝑥 + (𝑐 − 2) − Log|𝜙|2, 1,1 ≡ −𝜕2𝑥 + (𝑐 − 2) − Log|𝜓0,𝑎|2, (4.3)

and 𝜓0,𝑎(𝑥) = e
𝑐+1
2 e−

(𝑥+𝑎)2
2 , with 𝑥 > 0, 𝑎 > 0. In this form,

1,1 = −𝜕2𝑥 + (𝑥 + 𝑎)2 − 3. (4.4)

The domain 𝐷+ is given by

𝐷+ = {(𝑓, ℎ) ∈ 𝑋2(−𝐿, 𝐿) ∶ 𝑓(𝐿) = 𝑓(−𝐿) = ℎ(0), 𝑓′(𝐿) − 𝑓′(−𝐿) = ℎ′(0), 𝑥2ℎ ∈ 𝐿2(0,+∞)}, (4.5)

with 𝑋𝑛(−𝐿, 𝐿) ≡ 𝐻𝑛(−𝐿, 𝐿) ⊕ 𝐻𝑛(0,+∞), 𝑛 ∈ ℕ. We note that (𝜙, 𝜓0,𝑎) ∈ 𝐷+.
For notational convenience, let 𝜓𝑎 = 𝜓0,𝑎. Define + = diag(0,1,1,1) with domain 𝐷+. The proof of Theorem 1.3 will
follow from Sections 4.1 and 4.2.

4.1 Perron–Frobenius Property andMorse Index for (+, 𝑫+)

Initially, we show that 𝑛(+) ≧ 1. Since (𝜙, 𝜓𝑎) ∈ 𝐷+ and

⟨+(𝜙, 𝜓𝑎)
𝑡, (𝜙, 𝜓𝑎)

𝑡⟩ = −2
[∫ 𝐿−𝐿 𝜙2(𝑥)𝑑𝑥 + ∫ +∞

0
𝜓2𝑎(𝑥)𝑑𝑥

]
< 0, (4.6)

10 of 27 Studies in Applied Mathematics, 2025
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the mini-max principle implies 𝑛(+) ≧ 1. Now, we note that is possible to show, via the extension theory for symmetric
operators of Krein–von Neumann, that 𝑛(+) ≦ 2.
Theorem 4.1. The Morse index associated with (+, 𝐷+) is one. Consequently, the Morse index for (1,) is also one.
The proof of Theorem 4.1 is based on the following Perron–Frobenius property (PF property) for (+, 𝐷+). Our approach
is grounded in ordinary differential equation (ODE) techniques (oscillation theorems) and the extension theory for
symmetric operators proposed in [8, 9] for the NLSmodel (1.10). We note that significant adjustments to this approach are
necessary for the NLS-log model. The proof of Theorem 4.1 is given at the end of this section.

4.1.1 Perron–Frobenius Property for (+, 𝑫+)

We start our analysis by defining the quadratic form  associated with operator + on 𝐷+, namely,  ∶ 𝐷() → ℝ, with

(𝜂, 𝜁) = ∫
𝐿

−𝐿
(𝜂′)2 + 𝑉𝜙𝜂2𝑑𝑥 + ∫

+∞

0

(𝜁′)2 +𝑊𝜓𝜁2𝑑𝑥, (4.7)

𝑉𝜙 = (𝑐 − 2) − Log|𝜙|2,𝑊𝜓 = (𝑐 − 2) − Log|𝜓𝑎|2 = (𝑥 + 𝑎)2 − 3, and 𝐷() defined by
𝐷() = {(𝜂, 𝜁) ∈ 𝑋1(−𝐿, 𝐿) ∶ 𝜂(𝐿) = 𝜂(−𝐿) = 𝜁(0), 𝑥𝜁 ∈ 𝐿2(0,+∞)}. (4.8)

Theorem 4.2. Let 𝜆0 < 0 be the smallest eigenvalue for + on 𝐷+ with associated eigenfunction (𝜂𝜆0 , 𝜁𝜆0). Then, 𝜂𝜆0 and
𝜁𝜆0 are positive functions. Moreover, 𝜂𝜆0 is even on [−𝐿, 𝐿].

Proof. The strategy of the proof is based on tools used in [8, 9] for the case of the NLS model in (1.10). For the NLS-log
model, significant changes are required, and for the reader’s convenience, we highlight in the differences in the approach.
We split the proof into several steps.

1. The profile 𝜁𝜆0 is not identically zero: indeed, suppose 𝜁𝜆0 ≡ 0, then 𝜂𝜆0 satisfies
⎧⎪⎨⎪⎩
0,1𝜂𝜆0(𝑥) = 𝜆0𝜂𝜆0(𝑥), 𝑥 ∈ (−𝐿, 𝐿),
𝜂𝜆0(𝐿) = 𝜂𝜆0(−𝐿) = 0
𝜂′
𝜆0
(𝐿) = 𝜂′

𝜆0
(−𝐿).

(4.9)

From the Dirichlet condition and oscillation theorems of the Floquet theory, 𝜂𝜆0 must be odd. By the Sturm–Liouville
theory, there is an eigenvalue 𝜃 for 0,1 such that 𝜃 < 𝜆0, with an associated eigenfunction 𝜉 > 0 on (−𝐿, 𝐿), and
𝜉(−𝐿) = 𝜉(𝐿) = 0.
Let Dir be the quadratic form associated with 0,1 with Dirichlet domain, i.e., Dir ∶ 𝐻

1
0
(−𝐿, 𝐿) → ℝ defined by

Dir(𝑓) = ∫
𝐿

−𝐿
(𝑓′)2 + 𝑉𝜙𝑓2𝑑𝑥. (4.10)

Then, Dir(𝜉) = (𝜉, 0) ≧ 𝜆0‖𝜉‖2 and so, 𝜃 ≧ 𝜆0. This is a contradiction.
2. 𝜁𝜆0(0) ≠ 0: suppose 𝜁𝜆0(0) = 0 and we consider the odd-extension 𝜁odd for 𝜁𝜆0 , and the even-extension 𝜓even of the

tail-profile 𝜓𝑎 on all the line. Then, 𝜁odd ∈ 𝐻2(ℝ) and 𝜓𝑒𝑣𝑒𝑛 ∈ 𝐻2(ℝ − {0}) ∩ 𝐻1(ℝ). Next, we consider the following
unfold operator ̃ associated with 1,1,

̃ = −𝜕2𝑥 + (𝑐 − 2) − Log|𝜓even|2 = −𝜕2𝑥 + (|𝑥| + 𝑎)2 − 3, (4.11)

on the 𝛿-type interaction domain

𝐷𝛿,𝛾 = {𝑓 ∈ 𝐻2(ℝ − {0}) ∩ 𝐻1(ℝ) ∶ 𝑥2𝑓 ∈ 𝐿2(ℝ), 𝑓′(0+) − 𝑓′(0−) = 𝛾𝑓(0)} (4.12)
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for any 𝛾 ∈ ℝ. By the extension theory for symmetric operators, the family (̃, 𝐷𝛿,𝛾)𝛾∈ℝ represents all the self-adjoint
extensions of the following symmetric operator (0, 𝐷(0)) defined by

0 = ̃, 𝐷(0) = {𝑓 ∈ 𝐻2(ℝ) ∶ 𝑥2𝑓 ∈ 𝐿2(ℝ), 𝑓(0) = 0},

with deficiency indices given by 𝑛±(0) = 1. For clarity, we summarize these results (see [12]). Consider the Hilbert
spaces scale associated with the self-adjoint operator

 = −𝜕2𝑥 + (|𝑥| + 𝑎)2, 𝐷() = {𝑓 ∈ 𝐻2(ℝ) ∶ 𝑥2𝑓 ∈ 𝐿2(ℝ)},
i.e.,𝑠() = {𝑓 ∈ 𝐿2(ℝ) ∶ ‖𝑓‖𝑠,2 = ‖( + 𝐼)𝑠∕2𝑓‖ < ∞}, 𝑠 ≧ 0, with

⋯ ⊂ 2() ⊂ 1() ⊂ 𝐿2(ℝ) ⊂ 1() ⊂ −2() ⊂ ⋯ .

The dual space of𝑠()will be denoted by−𝑠() = 𝑠()′. In this form,we get that the 𝛿-functional 𝛿 ∶ 1() → ℂ

defined by 𝛿(𝜓) = 𝜓(0) belongs to 1()′ = −1() (by Sobolev embedding) and so 𝛿 ∈ −2(). By Lemma 1.2.3 in
[7], the restriction0 =  − 3 to𝐷(0) is a densely defined symmetric operatorwith deficiency indices 𝑛±(0) = 1.
Then, by Proposition A.3 (the Appendix) and Remark 4.2—item (iii) in [12], we can characterized all the self-adjoint
extensions of (0, 𝐷(0)) as (̃, 𝐷𝛿,𝛾)𝛾∈ℝ.
Now, the even tail-profile 𝜓even satisfies 𝜓′even(𝑥) ≠ 0 for all 𝑥 ≠ 0, and so from the well-defined relation

0𝑓 = − 1

𝜓′even

𝑑

𝑑𝑥

[
(𝜓′even)

2 𝑑

𝑑𝑥

(
𝑓

𝜓′even

)]
, 𝑥 ≠ 0 (4.13)

we can see easily that ⟨0𝑓, 𝑓⟩ ≧ 0 for all 𝑓 ∈ 𝐷(0). By extension theory (Proposition A.4 in the Appendix) we
obtain that the Morse index for the family (̃, 𝐷𝛿,𝛾) satisfies 𝑛(̃) ≦ 1, for all 𝛾 ∈ ℝ. Since 𝜁odd ∈ 𝐷𝛿,𝛾 (for any 𝛾) and
̃𝜁odd = 𝜆0𝜁odd onℝ, we have 𝑛(̃) = 1. Then, 𝜆0 is the smallest negative eigenvalue for ̃ on 𝛿-interactions domains
in (4.12), and by Theorem A.6 in the Appendix (the Perron Frobenius property for ̃ with 𝛿-interactions domains on
the line), 𝜁odd must be positive, which is a contradiction. Therefore, 𝜁𝜆0(0) ≠ 0.

3. 𝜁𝜆0 ∶ [0,+∞) → ℝ can be chosen strictly positive: Without loss of generality, assume 𝜁𝜆0(0) > 0. The condition
𝜂′
𝜆0
(𝐿) − 𝜂′

𝜆0
(−𝐿) = 𝜁′

𝜆0
(0) implies

𝜁′
𝜆0
(0) =

⎡⎢⎢⎣
𝜂′
𝜆0
(𝐿) − 𝜂′

𝜆0
(−𝐿)

𝜁𝜆0(0)

⎤⎥⎥⎦𝜁𝜆0(0) ≡ 𝛾0𝜁𝜆0(0).
Let 𝜁even denote even extension of 𝜁𝜆0 to the entire line. Then, 𝜁even ∈ 𝐷𝛿,2𝛾0 and ̃𝜁even = 𝜆0𝜁even. A similar analysis
as in item 2) above suggests that 𝜆0 is the smallest eigenvalue for (̃, 𝐷𝛿,2𝛾0). Hence, 𝜁even is strictly positive on ℝ.
Therefore, 𝜁𝜆0(𝑥) > 0 for all 𝑥 ≧ 0.

4. 𝜂𝜆0 ∶ [−𝐿, 𝐿] → ℝ can be chosen strictly positive: initially, we have that 𝜂𝜆0 satisfies the following boundary condition,

𝜂′
𝜆0
(𝐿) − 𝜂′

𝜆0
(−𝐿) =

⎡⎢⎢⎣
𝜁′
𝜆0
(0)

𝜁𝜆0(0)

⎤⎥⎥⎦𝜁𝜆0(0) ≡ 𝛼0𝜁𝜆0(0) = 𝛼0𝜂𝜆0(𝐿).
Consider the eigenvalue problem for 0,1 in (4.3) with real coupled self-adjoint boundary condition determined by
𝛼 ∈ ℝ:

(𝑅𝐶𝛼) ∶

⎧⎪⎨⎪⎩
0,1𝑦(𝑥) = 𝛽𝑦(𝑥), 𝑥 ∈ (−𝐿, 𝐿),
𝑦(𝐿) = 𝑦(−𝐿),
𝑦′(𝐿) − 𝑦′(−𝐿) = 𝛼𝑦(𝐿).

(4.14)

By Theorem 1.35 in Kong et al. [37] or Theorem 4.8.1 in Zettl [44], the first eigenvalue 𝛽0 for (4.14) with 𝛼 = 𝛼0 is
simple. Since (𝜂𝜆0 , 𝜆0) solves (4.14), 𝜆0 ≧ 𝛽0. In the following, we show 𝜆0 = 𝛽0. Indeed, we consider the quadratic form

12 of 27 Studies in Applied Mathematics, 2025
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associated with the (𝑅𝐶𝛼0)-problem in (4.14), 𝑅𝐶 , where for ℎ ∈ 𝐻1(−𝐿, 𝐿) with ℎ(𝐿) = ℎ(−𝐿),

𝑅𝐶(ℎ) = ∫
𝐿

−𝐿
(ℎ′)2 + 𝑉𝜙ℎ2𝑑𝑥 − 𝛼0|ℎ(𝐿)|2. (4.15)

Let 𝜉 = 𝜈𝜁𝜆0 with 𝜈 ∈ ℝ chosen such that 𝜉(0) = 𝜈𝜁𝜆0(0) = ℎ(𝐿). Then, (ℎ, 𝜉) ∈ 𝐷() in (4.8). Using1,1𝜁𝜆0 = 𝜆0𝜁𝜆0 ,
we obtain

𝑅𝐶(ℎ) = (ℎ, 𝜉) − 𝛼0ℎ2(𝐿) − ∫
+∞

0

(𝜉′)2 +𝑊𝜓𝜉2𝑑𝑥

= (ℎ, 𝜉) − 𝛼0ℎ2(𝐿) + 𝜈2𝜁′𝜆0(0)𝜁𝜆0(0) − 𝜆0𝜈2‖𝜁𝜆0‖2
= (ℎ, 𝜉) − 𝜉′

𝜆0
(0)ℎ(𝐿) + ℎ(𝐿)𝜉′

𝜆0
(0) − 𝜆0‖𝜉‖2

= (ℎ, 𝜉) − 𝜆0‖𝜉‖2 ≧ 𝜆0[‖ℎ‖2 + ‖𝜉‖2] − 𝜆0‖𝜉‖2 = 𝜆0‖ℎ‖2.
(4.16)

Thus, 𝛽0 ≧ 𝜆0 and so 𝛽0 = 𝜆0.
By the analysis above,we get that 𝜆0 is the first eigenvalue for the problem (𝑅𝐶𝛼0) in (4.14) and thus it is simple. Then, 𝜂𝜆0
is either odd or even. If 𝜂𝜆0 is odd, the condition 𝜂𝜆0(𝐿) = 𝜂𝜆0(−𝐿) implies 𝜂𝜆0(𝐿) = 0. However, 𝜂𝜆0(𝐿) = 𝜁𝜆0(0) > 0.
So, we must have that 𝜂𝜆0 is even. Now, from the oscillation theorem for the (𝑅𝐶𝛼0)-problem, the number of zeros of
𝜂𝜆0 on [−𝐿, 𝐿) is 0 or 1 (see Theorem 4.8.5 in [44]). Since 𝜂𝜆0(−𝐿) > 0 and 𝜂𝜆0 is even, we necessarily conclude that
𝜂𝜆0 > 0 on [−𝐿, 𝐿]. This completes the proof.

□

Corollary 4.3. Let 𝜆0 < 0 be the smallest eigenvalue for (+, 𝐷+). Then, 𝜆0 is simple.

Proof. The proof is immediate. Suppose 𝜆0 is a double eigenvalue. Then, there exists an eigenfunction (𝑓0, 𝑔0) associated
with 𝜆0 orthogonal to (𝜂𝜆0 , 𝜁𝜆0). By Theorem 4.2, 𝑓0, 𝑔0 > 0. This contradicts the orthogonality of eigenfunctions. □

4.1.2 Splitting Eigenvalue Method on Tadpole Graphs

In the following, we establish our main strategy for studying eigenvalue problems on a tadpole graph  as deduced in
Angulo [9]. More exactly, we reduce the eigenvalue problem for 1 ≡ diag(0

1
,1
1
) in (1.17) to two classes of eigenvalue

problems: one for 0
1
= −𝜕2𝑥 + (𝑐 − 2) − Log|𝜙|2 with periodic boundary conditions on [−𝐿, 𝐿] and the other for the

operator 1
1
= −𝜕2𝑥 + (𝑐 − 2) − Log|𝜓|2 with Neumann-type boundary conditions on [𝐿,+∞).

Lemma 4.4. Let us consider (1,) in Theorem 1.3. Suppose (𝑓, 𝑔) ∈  with 𝑔(𝐿) ≠ 0 and 1(𝑓, 𝑔)𝑡 = 𝛾(𝑓, 𝑔)𝑡 , for 𝛾 ≤ 0.
Then, we obtain the following two eigenvalue problems:{0

1
𝑓(𝑥) = 𝛾𝑓(𝑥), 𝑥 ∈ (−𝐿, 𝐿),

𝑓(𝐿) = (−𝐿), 𝑓′(𝐿) = 𝑓′(−𝐿),

{1
1
𝑔(𝑥) = 𝛾𝑔(𝑥), 𝑥 > 𝐿,

𝑔′(𝐿+) = 0.

Proof. For (𝑓, 𝑔) ∈  and 𝑔(𝐿) ≠ 0, we have

𝑓(−𝐿) = 𝑓(𝐿), 𝑓′(𝐿) − 𝑓′(−𝐿) =
[
𝑔′(𝐿+)
𝑔(𝐿)

]
𝑓(𝐿) ≡ 𝜃𝑓(𝐿),

and so 𝑓 satisfies the real-coupled problem (𝑅𝐶𝛼) in (4.14) with 𝛼 = 𝜃 and 𝛽 = 𝛾. Then, from the proof of Lemma 3.4 in
[9] we obtain that 𝜃 = 0, and thus we prove the lemma. □

Remark 4.5. From Lemma 4.4, it follows that 𝜂𝜆0 in Theorem 4.2 remains an even-periodic function on [−𝐿, 𝐿] and 𝜁𝜆0
satisfies a Neumann boundary condition on [𝐿,+∞).

13 of 27
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4.1.3 Morse Index for (+, 𝑫+)

In the following, we provide the proof of Theorem 4.1.

Proof. We consider + on 𝐷+ and suppose 𝑛(+) = 2 without loss of generality (note that via extension theory we can
show 𝑛(+) ≦ 2). From Theorem 4.2 and Corollary 4.3, the first negative eigenvalue 𝜆0 for+ is simple with an associated
eigenfunction (𝜂𝜆0 , 𝜁𝜆0) having positive components and 𝜂𝜆0 being even on [−𝐿, 𝐿]. Therefore, for 𝜆1 being the second
negative eigenvalue for +, we need to have 𝜆1 > 𝜆0.
Let (𝑓1, 𝑔1) ∈ 𝐷+ be an associated eigenfunction to 𝜆1. In the following, we divide our analysis into several steps.

1. Suppose 𝑔1 ≡ 0: then 𝑓1(−𝐿) = 𝑓1(𝐿) = 0 and 𝑓1 is odd (see step 1) in the proof of Theorem 4.2). Now, our profile-
solution 𝜙 satisfies

0,1𝜙′ = 0, 𝜙′ is odd, 𝜙′(𝑥) > 0, for 𝑥 ∈ [−𝐿, 0),
thus, since 𝜆1 < 0 we obtain from the Sturm comparison theorem that there is 𝑟 ∈ (−𝐿, 0) such that 𝜙′(𝑟) = 0, which
is a contradiction. Then, 𝑔1 is non-trivial.

2. Suppose 𝑔1(0+) = 0: we consider the odd-extension 𝑔1,odd ∈ 𝐻2(ℝ) of 𝑔1 and the unfold operator ̃ in (4.11) on the 𝛿-
interaction domains𝐷𝛿,𝛾 in (4.12). Then, 𝑔1,odd ∈ 𝐷𝛿,𝛾 for any 𝛾 and so by the Perron–Frobenius property for (̃, 𝐷𝛿,𝛾)
(see the Appendix) we must have that 𝑛(̃) ≧ 2. But, by step 2) in the proof of Theorem 4.2 we obtain 𝑛(̃) ≦ 1 for all
𝛾, and so we get a contradiction.

3. Suppose 𝑔1(0+) > 0 (without loss of generality): we will see that 𝑔1(𝑥) > 0 for all 𝑥 > 0. Indeed, by Lemma 4.4 we get
𝑔′
1
(0+) = 0. Thus, by considering the even-extension 𝑔1,even of 𝑔1 on all the line and the unfold operator ̃ in (4.11) on

𝐷𝛿,0, we have that 𝑔1,even ∈ 𝐷𝛿,0 and so 𝑛(̃) ≧ 1. But, we know that 𝑛(̃) ≦ 1 and so 𝜆1 is the smallest eigenvalue for
(̃, 𝐷𝛿,0). Therefore, by the Perron–Frobenius property for (̃, 𝐷𝛿,0) (see the Appendix) 𝑔1 is strictly positive. We note
that as 𝐷𝛿,0 = {𝑓 ∈ 𝐻2(ℝ) ∶ 𝑥2𝑓 ∈ 𝐿2(ℝ)}, it follows from the classical oscillation theory (see Theorem 3.5 in [19])
that 𝑔1,even > 0.

4. Lastly, since the pairs (𝜁𝜆0 , 𝜆0) and (𝑔1, 𝜆1) satisfy the eigenvalue problem{1,1𝑔(𝑥) = 𝛾𝑔(𝑥), 𝑥 > 0,

𝑔′(0+) = 0,
(4.17)

it follows the property that 𝜁𝜆0 and 𝑔1 need to be orthogonal (which is a contradiction). This finishes the proof.

□

4.2 Kernel for (𝟏,)

In the following, we study the nullity index for 1 on  (see item 4) in Theorem 1.3. Using the notation at the beginning
of this section, it is sufficient to show the following.

Theorem 4.6. Let us consider + = diag(0,1,1,1) on 𝐷+. Then, the kernel associated with + on 𝐷+ is trivial.

Proof. Let (𝑓, ℎ) ∈ 𝐷+ such that+(𝑓, ℎ)
𝑡 = 𝟎. Thus, since1,1ℎ = 0 and1,1𝜓′𝑎 = 0, we obtain from the classical Sturm–

Liouville theory on half-lines ([19]) that there is 𝑏 ∈ ℝ with ℎ = 𝑏𝜓′𝑎 on (0,+∞). Next, we have the following cases:

1. Suppose 𝑏 = 0: then ℎ ≡ 0 and 𝑓 satisfies 0,1𝑓 = 0 with Dirichlet-periodic conditions

𝑓(𝐿) = 𝑓(−𝐿) = 0, and 𝑓′(𝐿) = 𝑓′(−𝐿).

Suppose 𝑓 ≠ 0. From the oscillation theory of the Floquet theory and the Sturm–Liouville theory for Dirichlet
conditions, 0,1𝜙′ = 0 on [−𝐿, 𝐿], 𝜙′ is odd and 𝜙′(𝐿) ≠ 0, we get 𝑓 ≡ 0 and so ker(+) is trivial (see proof of
Theorem 1.4 in [9]).

14 of 27 Studies in Applied Mathematics, 2025
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2. Suppose 𝑏 ≠ 0: then ℎ(0) ≠ 0 (ℎ(𝑥) > 0 without loss of generality with 𝑏 < 0). Hence, from the splitting eigenvalue
result in Lemma 4.4, we obtain that 𝑓 satisfies{0,1𝑓(𝑥) = 0, 𝑥 ∈ [−𝐿, 𝐿],

𝑓(𝐿) = 𝑓(−𝐿) = ℎ(0) > 0, and 𝑓′(𝐿) = 𝑓′(−𝐿),
(4.18)

and ℎ′(0) = 0. The last equality implies immediately 𝜓′′𝑎 (0) = 0, therefore if we have for 𝛼 = 𝜓′′𝑎 (0) that 𝛼 ≠ 0, we
obtain a contradiction. Then, 𝑏 = 0 and by item 1) above ker(+) = {𝟎}.
Next, we consider the case𝛼 = 0. Then, initially, by the Floquet theory and the oscillation theory, we have the following
partial distribution of eigenvalues, 𝛽𝑛 and 𝜇𝑛, associatedwith0,1 with periodic andDirichlet conditions, respectively,

𝛽0 < 𝜇0 < 𝛽1 ≦ 𝜇1 ≦ 𝛽2 < 𝜇2 < 𝛽3. (4.19)

In the following, we will see 𝛽1 = 0 in (4.19) and it is simple. Indeed, by (4.19) suppose that 0 > 𝜇1. Now, we know that
0,1𝜙′ = 0 on [−𝐿, 𝐿], 𝜙′ is odd and 𝜙′(𝑥) > 0 for [−𝐿, 0), and the eigenfunction associated with 𝜇1 is odd, therefore
from the Sturm comparison theorem we get that 𝜙′ needs to have one zero on (−𝐿, 0), which is impossible. Hence,
0 ≦ 𝜇1.
Next, suppose that 𝜇1 = 0 and let 𝜒1 be an odd eigenfunction for 𝜇1. Let {𝜙′, 𝑃} be a basis of solutions for the problem0,1𝑔 = 0 (we recall that 𝑃 can be chosen to be even and satisfying 𝑃(0) = 1 and 𝑃′(0) = 0). Then, 𝜒1 = 𝑎𝜙′ with
0 = 𝜒1(𝐿) = 𝑎𝜙′(𝐿). Hence,𝜒1 ≡ 0which is not possible. Therefore, 0 < 𝜇1 and so 𝛽1 = 0 is simple with eigenfunction
𝑓 (being even or odd). We note that 𝛽2 is also simple.
Lastly, since 𝑓(−𝐿) = 𝑓(𝐿) > 0, it follows that 𝑓 is even and by the Floquet theory 𝑓 has exactly two different zeros
−𝑎, 𝑎 (𝑎 > 0) on (−𝐿, 𝐿). Hence, 𝑓(0) < 0. Next, we consider the Wronskian function (constant) of 𝑓 and 𝜙′,

𝑊(𝑥) = 𝑓(𝑥)𝜙′′(𝑥) − 𝑓′(𝑥)𝜙′(𝑥) ≡ 𝐶, for all 𝑥 ∈ [−𝐿, 𝐿].

Then, 𝐶 = 𝑓(0)𝜙′′(0) > 0. Therefore, by the hypotheses (𝛼 = 0) we obtain

𝐶 = 𝑓(𝐿)𝜙′′(𝐿) = ℎ(0)𝜓′′𝑎 (0) = 0, (4.20)

which is a contradiction. Then, 𝑏 = 0 and by item 1) above we get again 𝑘𝑒𝑟(+) = {𝟎}. This finishes the proof. □

4.3 Morse and Nullity Indices for Operator 𝟐

Theorem 1.4.We consider a positive single-lobe state (𝜙𝑐, 𝜓𝑐). Then, from (1.8) we get (𝜙𝑐, 𝜓𝑐) ∈ 𝑘𝑒𝑟(2). Next, we consider
 = −𝜕2𝑥 + 𝑐 − Log(𝜙2𝑐 ),  = −𝜕2𝑥 + 𝑐 − Log(𝜓2𝑐 )

then for any 𝑉 = (𝑓, 𝑔) ∈ 𝐷0, we obtain

𝑓 = − 1
𝜙𝑐

𝑑

𝑑𝑥

[
𝜙2𝑐
𝑑

𝑑𝑥

(
𝑓

𝜙𝑐

)]
, 𝑥 ∈ (−𝐿, 𝐿)

 𝑔 = − 1
𝜓𝑐

𝑑

𝑑𝑥

[
𝜓2𝑐
𝑑

𝑑𝑥

(
𝑔

𝜓𝑐

)]
, 𝑥 > 𝐿.

(4.21)

Thus, we obtain immediately

⟨2𝑉, 𝑉⟩ = ∫
𝐿

−𝐿
𝜙2𝑐

(
𝑑

𝑑𝑥

(
𝑓

𝜙𝑐

))2
𝑑𝑥 + ∫

+∞

𝐿

𝜓2𝑐

(
𝑑

𝑑𝑥

(
𝑔

𝜓𝑐

))2
𝑑𝑥 ≧ 0.

Moreover, since ⟨2𝑉, 𝑉⟩ = 0 if and only if 𝑓 = 𝑑1𝜙𝑐 and 𝑔 = 𝑑2𝜓𝑐, we obtain from the continuity property at 𝑥 = 𝐿 that
𝑑1 = 𝑑2. Then, ker(2) = span{(𝜙𝑐, 𝜓𝑐)}. This finishes the proof. □
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5 Existence of the Positive Single-Lobe State

In this section, our focus is on proving the following existence theorem:

Theorem 5.1. For any 𝑐 ∈ ℝ, there is only one single-lobe positive state Θ𝑐 = (𝜙𝑐, 𝜓𝑐) ∈ 𝐷0 that satisfies the NLS-log
equation (1.7), is monotonically decreasing on [0, 𝐿] and [𝐿,+∞), and the map 𝑐 ∈ ℝ ↦ Θ𝑐 ∈ 𝐷0 is 𝐶1. Moreover, the mass
𝜇(𝑐) = 𝑄(Θ𝑐) satisfies

𝑑

𝑑𝑐
𝜇(𝑐) > 0.

For the proof of Theorem 5.1, we need some tools from dynamical systems theory for orbits on the plane and so for the
convenience of the reader, we will divide our analysis into several steps (sub-sections) in the following.

5.1 The Period Function

We consider 𝐿 = 𝜋 (without loss of generality) and Ψ(𝑥) = 𝜓(𝑥 + 𝜋), 𝑥 > 0. Then, the transformation

𝜙0(𝑥) = e
1−𝑐
2 Ψ(𝑥), 𝜙1(𝑥) = e

1−𝑐
2 𝜙(𝑥) (5.1)

implies that system (1.8)with 𝑍 = 0 is transformed into the following system of differential equations independent of the
velocity 𝑐:

⎧⎪⎪⎨⎪⎪⎩

−𝜙′′
1
(𝑥) + 𝜙1(𝑥) − Log(𝜙2

1
(𝑥))𝜙1(𝑥) = 0, 𝑥 ∈ (−𝜋, 𝜋),

−𝜙′′
0
(𝑥) + 𝜙0(𝑥) − Log(𝜙2

0
(𝑥))𝜙0(𝑥) = 0, 𝑥 > 0,

𝜙1(𝜋) = 𝜙1(−𝜋) = 𝜙0(0),
𝜙′
1
(𝜋) − 𝜙′

1
(−𝜋) = 𝜙′

0
(0).

(5.2)

We know that a positive decaying solution to the equation−𝜙′′
0
+ 𝜙0 − Log(𝜙2

0
)𝜙0 = 0 on the positive half-line is expressed

by

𝜙0(𝑥) = 𝑒e
−(𝑥+𝑎)2

2 , 𝑥 > 0, 𝑎 ∈ ℝ (5.3)

with 𝜙0(0) = 𝑒e
−𝑎2
2 . If 𝑎 > 0, 𝜙0 is monotonically decreasing on [0,+∞) (a Gausson tail-profile); and if 𝑎 < 0, 𝜙0 is non-

monotone on [0,+∞) (a Gausson bump-profile). To prove Theorem 5.1, we will only consider Gausson-tail profiles for 𝜙0,
therefore, we need to choose 𝑎 > 0.
The second-order differential equations in system (5.2) are integrable with a first-order invariant given by

𝐸(𝜙, 𝜉) = 𝜉2 − 𝐴(𝜙), 𝜉 ∶=
𝑑𝜙

𝑑𝑥
, 𝐴(𝜙) = 2𝜙2 − 𝑙𝑜𝑔(𝜙2)𝜙2. (5.4)

Note that the value of 𝐸(𝜙, 𝜉) = 𝐸 is independent of 𝑥. Next, for 𝐴(𝑢) = 2𝑢2 − Log(𝑢2)𝑢2 we have that there is only one

positive root of 𝐴′(𝑢) = 2𝑢(1 − Log(𝑢2)) denoted by 𝑟∗ such that 𝐴′(𝑟∗) = 0. In fact, 𝑟∗ = e
1
2 . As shown in Figure 4, for

𝐸 = 0 there are two homoclinic orbits: one corresponds to positive 𝑢 = 𝜙 and the other to negative 𝑢 = −𝜙. Periodic orbits
exist inside each of the twohomoclinic loops and correspond to𝐸 ∈ (𝐸∗, 0), where𝐸∗ = −𝐴(𝑟∗) = −𝑒, and they correspond
to either strictly positive 𝑢 or strictly negative 𝑢. Periodic orbits outside the two homoclinic loops exist for 𝐸 ∈ (0,+∞)
and they correspond to sign-indefinite 𝑢. Note that

𝐸 + 𝐴(𝑟∗) > 0, 𝐸 ∈ (𝐸∗,+∞). (5.5)

The homoclinic orbit with the profile solution (5.3) and 𝑎 > 0 corresponds to 𝜉 = −
√
𝐴(𝜙) for all 𝑥 > 0. Let us define

𝑟0 ∶= 𝑒e
−𝑎2
2 , that is, the value of 𝜙0(𝑥) at 𝑥 = 0. Then, −

√
𝐴(𝑟0) is the value of 𝜙′0 at 𝑥 = 0. Note that:

16 of 27 Studies in Applied Mathematics, 2025
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FIGURE 4 Red line: 𝑠0(𝑟0) =
1

2

√
𝐴(𝑟0) =

1

2
𝜙′
0
(0). Dashed–dotted vertical line depicts the value of 𝑟0 = 𝜙0(0) = 𝑒e−𝑎

2∕2. The
blue dashed curve represents the homoclinic orbit at 𝐸 = 0, with the solid part depicting the shifted-tail NLS-log soliton.
The level curve 𝐸(𝜙, 𝜁) = 𝐸(𝑟0, 𝑠0), at 𝑟0 = 𝑒e−𝑎

2∕2 and 𝑠0 =
1

2

√
𝐴(𝑝0), is shown by the blue dashed line. The blue solid parts

depict a suitable positive single-lobe state profile solution for the NLS-log.

∙ 𝑟0 ∈ (0, 𝑒) is a free parameter obtained from 𝑎 ∈ (0,+∞).
∙ 𝑟0(𝑎)⟶ 𝑒 when 𝑎⟶ 0.
∙ 𝑟0(𝑎)⟶ 0 when 𝑎⟶ +∞.

Hence, the profile 𝜙1 will be found from the following boundary-value problem:

⎧⎪⎨⎪⎩
−𝜙′′

1
(𝑥) + 𝜙1(𝑥) − Log(𝜙2

1
(𝑥))𝜙1(𝑥) = 0, 𝑥 ∈ (−𝜋, 𝜋),

𝜙1(𝜋) = 𝜙1(−𝜋) = 𝑟0,

𝜙′
1
(−𝜋) = −𝜙′

1
(𝜋) =

√
𝐴(𝑟0)

2

(5.6)

where 𝑟0 ∈ (0, 𝑒) will be considered as a free parameter of the problem. The positive single-lobe state 𝜙1 will correspond
to a part of the level curve 𝐸(𝜙, 𝜉) = 𝐸 which intersects 𝑟0 only twice at the ends of the interval [−𝜋, 𝜋] (see Figure 4 for a
geometric construction of a positive single-lobe state for (5.6)).

Let us denote by 𝑠0 =
√
𝐴(𝑟0)

2
and we define the period function for a given (𝑟0, 𝑠0):

𝑇+(𝑟0, 𝑠0) ∶= ∫
𝑟+

𝑟0

𝑑𝜙√
𝐸 + 𝐴(𝜙)

, (5.7)

where the value 𝐸 and the turning point 𝑟+ are defined from (𝑟0, 𝑠0) by

𝐸 = 𝑠2
0
− 𝐴(𝑟0) = −𝐴(𝑟+). (5.8)

For each level curve of 𝐸(𝜙, 𝜉) = 𝐸 inside the homoclinic loop we have 𝐸 ∈ (𝐸∗, 0), and the turning point satisfies:

0 < 𝑟∗ < 𝑟+ < 𝑒. (5.9)

We recall that 𝜙1 is a positive single-lobe solution of the boundary-value problem (5.6) if and only if 𝑟0 ∈ (0, 𝑒) is a root of
the nonlinear equation

𝑇(𝑟0) = 𝜋, where 𝑇(𝑟0) = 𝑇+

(
𝑟0,

√
𝐴(𝑟0)

2

)
. (5.10)
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We note that, as 𝑇(𝑟0) is uniquely defined by 𝑟0 ∈ (0, 𝑒), the nonlinear equation (5.10) defines a unique mapping (0, 𝑒) ∋
𝑟0 ↦ 𝑇(𝑟0) ∈ (0,+∞). In the following subsection, we show the monotonicity of this function.

5.2 Monotonicity of the Period Function

In this subsection, we will use the theory of dynamical systems for orbits on the plane and the period function in (5.7) to
prove that the mapping (0, 𝑒) ∋ 𝑟0 ↦ 𝑇(𝑟0) ∈ (0,+∞) is 𝐶1 and monotonically decreasing.
Recall that if𝑊(𝜙, 𝜉) is a 𝐶1 function in an open region of ℝ2, then the differential of𝑊 is defined by

𝑑𝑊(𝜙, 𝜉) = 𝜕𝑊
𝜕𝜙
𝑑𝜙 + 𝜕𝑊

𝜕𝜉
𝑑𝜉

and the line integral of 𝑑𝑊(𝜙, 𝜉) along any 𝐶1 contour 𝛾 connecting (𝜙0, 𝜉0) and (𝜙1, 𝜉1) does not depend on 𝛾 and is
evaluated as

∫
𝛾

𝑑𝑊(𝜙, 𝜉) =𝑊(𝜙1, 𝜉1) −𝑊(𝜙0, 𝜉0).

At the level curve of 𝐸(𝜙, 𝜉) = 𝜉2 − 𝐴(𝜙) = 𝐸, we can write

𝑑

[
2(𝐴(𝜙) − 𝐴(𝑟∗))𝜉

𝐴′(𝜙)

]
=

[
2 −

2(𝐴(𝜙) − 𝐴(𝑟∗))𝐴′′(𝜙)

[𝐴′(𝜙)]
2

]
𝜉𝑑𝜙 +

2(𝐴(𝜙) − 𝐴(𝑟∗))
𝐴′(𝜙)

𝑑𝜉 (5.11)

where the quotients are not singular for every𝜙 > 0. In view of the fact that 2𝜉𝑑𝜉 = 𝐴′(𝜙)𝑑𝜙 on the level curve𝐸(𝜙, 𝜉) = 𝐸,
we can express (5.11) as:

(𝐴(𝜙) − 𝐴(𝑟∗))
𝜉

𝑑𝜙 = −

[
2 −

2(𝐴(𝜙) − 𝐴(𝑟∗))𝐴′′(𝜙)

[𝐴′(𝜙)]
2

]
𝜉𝑑𝜙 + 𝑑

[
2(𝐴(𝜙) − 𝐴(𝑟∗))𝜉

𝐴′(𝜙)

]
. (5.12)

The following lemma justifies the monotonicity of the mapping (0, 𝑒) ∋ 𝑟0 ↦ 𝑇(𝑟0) ∈ (0,+∞).

Lemma 5.2. The function 𝑟0 ↦ 𝑇(𝑟0) is 𝐶1 and monotonically decreasing for every 𝑟0 ∈ (0, 𝑒).

Proof. Since 𝑠0 =
√
𝐴(𝑟0)

2
in (5.10), for a given 𝑟0 ∈ (0, 𝑒), we have that the value of 𝑇(𝑟0) is obtained from the level curve

𝐸(𝜙, 𝜉) = 𝐸0(𝑟0), where

𝐸0(𝑟0) ≡ 𝑠20 − 𝐴(𝑟0) = −
(
1 − 1

4

)
𝐴(𝑟0) = −3

4
𝐴(𝑟0). (5.13)

For every 𝑟0 ∈ (0, 𝑒), we use the formula (5.12) to get

[𝐸0(𝑟0) + 𝐴(𝑟∗)]𝑇(𝑟0) = ∫
𝑟+

𝑟0

[
𝜉 −

𝐴(𝜙) − 𝐴(𝑟∗)
𝜉

]
𝑑𝜙

= ∫
𝑟+

𝑟0

[
3 −

2(𝐴(𝜙) − 𝐴(𝑟∗))𝐴′′(𝜙)

[𝐴′(𝜙)]
2

]
𝜉𝑑𝜙 +

2(𝐴(𝑟0) − 𝐴(𝑟∗))𝑠0
𝐴′(𝑟0)

,

(5.14)

where we use (5.8) to obtain that 𝜉 = 0 at 𝜙 = 𝑟+ and 𝜉 = 𝑠0 at 𝜙 = 𝑟0. Because the integrands are free of singularities and
𝐸0(𝑟0) + 𝐴(𝑟∗) > 0 due to (5.5), the mapping (0, 𝑒) ∋ 𝑟0 ↦ 𝑇(𝑟0) ∈ (0,+∞) is 𝐶1. We only need to prove that 𝑇′(𝑟0) < 0 for
every 𝑟0 ∈ (0, 𝑒).
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FIGURE 5 Graph of 𝑓 in (5.17).

Differentiating (5.14) with respect to 𝑟0 yields

[𝐸0(𝑟0) + 𝐴(𝑟∗)]𝑇′(𝑟0) =([𝐸0(𝑟0) + 𝐴(𝑟∗)]𝑇(𝑟0))
′ − 𝐸′

0
(𝑟0)𝑇(𝑟0)

=∫
𝑟+

𝑟0

[
3 −

2(𝐴(𝜙) − 𝐴(𝑟∗))𝐴′′(𝜙)

[𝐴′(𝜙)]
2

]
𝜕𝜉

𝜕𝑟0
𝑑𝜙 −

[
3 −

2(𝐴(𝑟0) − 𝐴(𝑟∗))𝐴′′(𝑟0)

[𝐴′(𝑟0)]
2

]
𝑠0

+

[
2 −

2(𝐴(𝑟0) − 𝐴(𝑟∗))𝐴′′(𝑟0)

[𝐴′(𝑟0)]
2

]
𝑠0 +

2(𝐴(𝑟0) − 𝐴(𝑟∗))
𝐴′(𝑟0)

𝑠′
0
− 𝐸′

0
(𝑟0)∫

𝑟+

𝑟0

𝑑𝜙

𝜉

= −
𝐴(𝑟∗)

4𝑠0
−
3𝐴′(𝑟0)

8 ∫
𝑟+

𝑟0

[
1 −

2(𝐴(𝜙) − 𝐴(𝑟∗))𝐴′′(𝜙)

[𝐴′(𝜙)]
2

]
𝑑𝜙

𝜉
,

(5.15)

where we have used

𝑠0 =
2𝐴(𝑟0)𝑠

′
0

𝐴′(𝑟0)
, 𝐸′

0
(𝑟0) = −

3𝐴′(𝑟0)

4
, 𝑠′

0
(𝑟0) =

𝐴′(𝑟0)

8𝑠0
,
𝜕𝜉

𝜕𝑟0
=
𝐸′
0
(𝑟0)

2𝜉
.

As 𝐴(𝜙) = 2𝜙2 − Log(𝜙2)𝜙2, we obtain that (5.15) is as follows:

[𝐸0(𝑟0) + 𝐴(𝑟∗)]𝑇′(𝑟0) = −
𝐴(𝑟∗)

4𝑠0
−
3𝐴′(𝑟0)

8 ∫
𝑟+

𝑟0

𝜙2(3 − Log(𝜙2)) − 𝑒(1 + Log(𝜙2))
𝜙2(1 − Log(𝜙2))2𝜉

𝑑𝜙. (5.16)

Let us define the following function:

𝑓(𝜙) = 𝜙2(3 − Log(𝜙2)) − 𝑒(1 + Log(𝜙2)). (5.17)

Differentiating (5.17) with respect to 𝜙 yields:

𝑓′(𝜙) = 2𝜙(2 − Log(𝜙2)) − 2𝑒
𝜙

⇔ 𝜙𝑓′(𝜙) = 2𝜙2(2 − Log(𝜙2)) − 2𝑒 (𝜙 > 0).

(5.18)

Note that 𝑓′(𝜙) = 0 ⇔ 𝜙 = 𝑟∗ and 𝑓′(𝜙) < 0 for any 𝜙 ∈ (0, 𝑟∗) ∪ (𝑟∗,+∞). Since 𝑓(𝜙) = 0 ⇔ 𝜙 = 𝑟∗ we have that 𝑓(𝜙) > 0
for any 𝜙 ∈ (0, 𝑟∗) and 𝑓(𝜙) < 0 for any 𝜙 ∈ (𝑟∗,+∞).
Next, we know that 𝐴′(𝑟0) < 0 for any 𝑟0 ∈ (𝑟∗, 𝑒) and 𝑓(𝜙) < 0 for 𝜙 ∈ [𝑟0, 𝑟+] ⊂ (𝑟∗, 𝑒) then follows that 𝑇′(𝑟0) < 0.
Similarly, since 𝐴′(𝑟∗) = 0, we have 𝑇′(𝑟∗) < 0.
Now, we consider the case 𝑟0 ∈ (0, 𝑟∗). Then,

∫
𝑟+

𝑟0

𝜙2(3 − Log(𝜙2)) − 𝑒(1 + Log(𝜙2))
𝜙2(1 − Log(𝜙2))2𝜉

𝑑𝜙 = 𝐼1 + 𝐼2 (5.19)
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FIGURE 6 Inequality in (5.21).

where

𝐼1 = ∫
𝑟∗

𝑟0

𝜙2(3 − Log(𝜙2)) − 𝑒(1 + Log(𝜙2))
𝜙2(1 − Log(𝜙2))2𝜉

𝑑𝜙,

𝐼2 = ∫
𝑟+

𝑟∗

𝜙2(3 − Log(𝜙2)) − 𝑒(1 + Log(𝜙2))
𝜙2(1 − Log(𝜙2))2𝜉

𝑑𝜙

(5.20)

Because 𝑓(𝜙) > 0 for any 𝜙 ∈ (0, 𝑟∗), 𝐼1 > 0. By using 𝐴′(𝜙) = 2𝜙(1 − Log(𝜙2)), we get that (see Figure 6)

𝜙2(3 − Log(𝜙2)) − 𝑒(1 + Log(𝜙2))
𝜙2(1 − Log(𝜙2))2

>

𝐴′(𝜙)

2𝜙3
for any 𝜙 ∈ (𝑟∗, 𝑒) ⊃ (𝑟∗, 𝑟+). (5.21)

By (5.21) and proceeding by integration by parts, we have

𝐼2>∫
𝑟+

𝑟∗

𝐴′(𝜙)

2𝜙3
√
𝐸0(𝑟0) + 𝐴(𝜙)

𝑑𝜙

= −
√
𝐸0(𝑟0) + 𝐴(𝑟∗)

𝑟3∗
+ 3∫

𝑟+

𝑟∗

√
𝐸0(𝑟0) + 𝐴(𝜙)

𝜙4
𝑑𝜙

= −
√
𝐸0(𝑟0) + 𝐴(𝑟∗)

𝑟3∗
+ 3∫

𝑟+

𝑟∗

𝜉

𝜙4
𝑑𝜙

(5.22)

Substituting this into (5.16) yields

[𝐸0(𝑟0) + 𝐴(𝑟∗)]𝑇′(𝑟0) = −
𝐴(𝑟∗)

4𝑠0
−
3𝐴′(𝑟0)

8
𝐼1 −

3𝐴′(𝑟0)

8
𝐼2

< −
𝐴(𝑟∗)

4𝑠0
+
3𝐴′(𝑟0)

8

√
𝐸0(𝑟0) + 𝐴(𝑟∗)

𝑟3∗
−
3𝐴′(𝑟0)

8
𝐼1

−
9𝐴′(𝑟0)

8 ∫
𝑟+

𝑟∗

𝜉

𝜙4
𝑑𝜙.

(5.23)
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To evaluate the first two terms we will use that 𝐴(𝑟∗) = 𝑒, 𝑠0 =
√
𝐴(𝑟0)

2
, andmax𝑟0∈(0,𝑟∗) 𝐴

′(𝑟0) = 4𝑒
− 1
2 , so that we get

−
𝐴(𝑟∗)

4𝑠0
+
3𝐴′(𝑟0)

8

√
𝐸0(𝑟0) + 𝐴(𝑟∗)

𝑟3∗
= − 𝑒

2
√
𝐴(𝑟0)

+
3𝐴′(𝑟0)

8

√
𝐸0(𝑟0) + 𝑒𝑐

𝑒
3
2

< − 𝑒

2
√
𝐴(𝑟0)

+
3
√
𝐸0(𝑟0) + 𝑒
2𝑒2

.

(5.24)

For (5.13) we get

− 𝑒

2
√
𝐴(𝑟0)

+
3
√
𝐸0(𝑟0) + 𝑒
2𝑒2

< 0 ⇔
3
√
𝐸0(𝑟0) + 𝑒
2𝑒2

<
𝑒

2
√
𝐴(𝑟0)

⇔
9(𝐸0(𝑟0) + 𝑒)

4𝑒4
<

𝑒2

4𝐴(𝑟0)

⇔ −
27𝐴(𝑟0)

4
+ 9𝑒 < 𝑒6

𝐴(𝑟0)
⇔ 9𝑒 <

𝑒6

𝐴(𝑟0)
+
27𝐴(𝑟0)

4
.

(5.25)

Since𝐴′(𝑟0) > 0 for any 𝑟0 ∈ (0, 𝑟∗),𝐴(𝑟0) increasesmonotonically for any 𝑟0 ∈ (0, 𝑟∗), and
1

𝐴(𝑟0)
decreasesmonotonically

for any 𝑟0 ∈ (0, 𝑟∗). Differentiating
𝑒6

𝐴(𝑟0)
+ 27𝐴(𝑟0)

4
with respect to 𝑟0 yields

(
𝑒6

𝐴(𝑟0)
+
27𝐴(𝑟0)

4

)′
= −

𝑒6𝐴′(𝑟0)

(𝐴(𝑟0))2
+
27𝐴′(𝑟0)

4
< −

𝑒6𝐴′(𝑟0)

(𝐴(𝑟∗))2
+
27𝐴′(𝑟0)

4

= −𝑒4𝐴′(𝑟0) +
27𝐴′(𝑟0)

4
=

(
27

4
− 𝑒4

)
𝐴′(𝑟0) < 0.

(5.26)

Therefore, the function 𝑒6

𝐴(𝑟0)
+ 27𝐴(𝑟0)

4
is monotonically decreasing for any 𝑟0 ∈ (0, 𝑟∗). Using this we get that

𝑒6

𝐴(𝑟0)
+
27𝐴(𝑟0)

4
>

𝑒6

𝐴(𝑟∗)
+
27𝐴(𝑟∗)

4
=

(
𝑒4 + 27

4

)
𝑒 > 9𝑒 (5.27)

Thus, for (5.25) we get

−
𝐴(𝑟∗)

4𝑠0
+
3𝐴′(𝑟0)

8

√
𝐸0(𝑟0) + 𝐴(𝑟∗)

𝑟3∗
< 0 for any 𝑟0 ∈ (0, 𝑟∗).

As a result of the above calculations, for every 𝑟0 ∈ (0, 𝑟∗) we have 𝑇′(𝑟0) < 0. This completes the proof. □

5.3 Proof of Theorem 5.1

Proof. Due to the monotonicity of the period function 𝑇(𝑟0) in 𝑟0 given by Lemma 5.2 we have a diffeomorphism (0, 𝑒) ∋
𝑟0 ↦ 𝑇(𝑟0) ∈ (0,+∞). In fact, we will show that 𝑇(𝑟0)⟶ 0 when 𝑟0 ⟶ 𝑒 and 𝑇(𝑟0)⟶ +∞, when 𝑟0 ⟶ 0. Indeed,
from (5.8), (5.13), and (5.9), we have that for 𝑟0 ∈ (0, 𝑒), the equation 𝐸0(𝑟0) = −𝐴(𝑟+) determines 𝑟+ = 𝑟+(𝑟0) from the
nonlinear equation:

2𝑟2+ − Log(𝑟2+)𝑟
2
+ = 3

4
[2𝑟2
0
− Log(𝑟2

0
)𝑟2
0
], (5.28)
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and lim𝑟0→𝑒
3

4
[2𝑟2
0
− Log(𝑟2

0
)𝑟2
0
] = 0. Now for (5.28) we have

2𝑟2+ − Log(𝑟2+)𝑟
2
+ → 0, when 𝑟0 → 𝑒 ⇔ 𝑟+ → 𝑒, when 𝑟0 → 𝑒

⇔ |𝑟+ − 𝑟0|→ 0, when 𝑟0 → 𝑒.
(5.29)

Since the weakly singular integrand below is integrable, we have

𝑇(𝑟0) = ∫
𝑟+

𝑟0

𝑑𝜙√
𝐸 + 𝐴(𝜙)

= ∫
𝑟+

𝑟0

𝑑𝜙√
𝐴(𝜙) − 𝐴(𝑟+)

→ 0, when 𝑟0 → 𝑒, (5.30)

Next, for every 0 < 𝑟0 < 𝑟+ < 𝑒 we obtain

𝑇(𝑟0) = ∫
𝑟+

𝑟0

𝑑𝜙√
𝐴(𝜙) − 𝐴(𝑟+)

≥ ∫
𝑟+

𝑟0

𝑑𝜙√
𝐴(𝜙)

= ∫
𝑟+

𝑟0

𝑑𝜙√
2𝜙2 − Log(𝜙2)𝜙2

= ∫
𝑟+

𝑟0

𝑑𝜙

𝜙
√
2 − Log(𝜙2)

.

(5.31)

Since 𝑟+ ∈ (𝑟∗, 𝑒) and

lim
𝑟0→0

3

4
[2𝑟2
0
− Log(𝑟2

0
)𝑟2
0
] = 0,

by (5.28) we have 𝑟+ → 𝑒, when 𝑟0 → 0. Therefore, as

∫
𝑒

0

𝑑𝜙

𝜙
√
(2 − Log(𝜙2)

= lim
𝜙→0

√
2 − Log(𝜙2) = +∞

we have 𝑇(𝑟0) → +∞ as 𝑟0 → 0. Then, as the function 𝑇(𝑟0) is monotone decreasing, the codomain of the function 𝑟0 ↦
𝑇(𝑟0) is indeed (0,+∞).
Thus, there is a unique 𝑟0 ∈ (0, 𝑒) such that 𝑇(𝑟0) = 𝜋. Therefore, the boundary-value problem (5.6) has a solution. Next,

define 𝑎0 > 0 such that 𝑒e
−𝑎2
0
2 = 𝑟0. Then,

𝜙𝑐(𝑥) = e
𝑐−1
2 𝜙1(𝑥) and 𝜓𝑐(𝑥) = e

𝑐+1
2 e

−(𝑥−𝜋+𝑎0)2
2

satisfies (1.8) with 𝑍 = 0. Obviously, we have that ℝ ∋ 𝑐 ↦ Θ(𝑐) = (𝜙𝑐, 𝜓𝑐) ∈ 𝐷0 is a 𝐶1-mapping of positive single-lobe
state for the NLS-log equation on the tadpole graph.
Next, the relation

𝜇(𝑐) = ‖Θ(𝑐)‖2 = e𝑐−1
[
∫
𝜋

−𝜋
𝜙2
1
(𝑥)𝑑𝑥 + ∫

+∞

0

𝜙2
0
(𝑥)𝑑𝑥

]

with 𝜙0(𝑥) = 𝑒e
−(𝑥+𝑎0)2

2 and 𝜙1 independent of 𝑐, implies 𝜇′(𝑐) > 0 for all 𝑐 ∈ ℝ. The proof of the theorem is
completed. □

6 Proof of the Stability Theorem

In this section, we show Theorem 1.5 based on the stability criterion in Theorem A.7 (the Appendix).
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Proof. By Theorem 5.1, we obtain the existence of a 𝐶1-mapping 𝑐 ∈ ℝ → Θ𝑐 = (𝜙𝑐, 𝜓𝑐) of positive single-lobe states for
theNLS-logmodel on a tadpole graph.Moreover, themapping 𝑐 → ‖Θ𝑐‖2 is strictly increasing. Next, fromTheorem 1.3 we
get that the Morse index for 1 in (1.17), 𝑛(1), satisfies 𝑛(1) = 1 and ker(1) = {𝟎}. Moreover, Theorem 1.4 establishes
that Ker(2) = span{(𝜙𝑐, 𝜓𝑐)} and 2 ≧ 0. Thus, by Theorem 2.2 and stability criterion in Theorem A.7, we obtain that
ei𝑐𝑡(𝜙𝑐, 𝜓𝑐) is orbitally stable in𝑊. This finishes the proof. □

7 Discussion and Open Problems

In this paper, we have established the existence and orbital stability of standing wave solutions for the NLS-log model on
a tadpole graph with a profile being a positive single-lobe state. To that end, we use tools from dynamical systems theory
for orbits on the plane and we use the period function for showing the existence of such a state with Neumann–Kirchhoff
condition at the vertex 𝜈 = 𝐿 (𝑍 = 0 in (1.8)). We believe that the existence (and simultaneous stability properties) of
positive single-lobe solutions on the tadpole graph can be obtained via variational analysis applied to the constrained
problem

𝐼𝜆 = inf {𝐸(𝑈) ∶ 𝑈 ∈ 𝑊(), 𝑄(𝑈) = 𝜆 > 0},

For this analysis, we would to use the approach in Cazenave [23] combined with symmetric rearrangement strategies on
metric graphs (see Adami et al. [1] or Ardila [16]). Furthermore, we note that via this approach for the existence, the phase
velocity 𝑐 in the vectorialNLS-log equation (1.7) is determined by the Lagrangemultiplier associatedwith theminimization
problem 𝐼𝜆. Additionally, stability information (after proving the globally well-posed theory in𝑊()) is only established
for the following minimizing set:

𝐺𝜆 = {𝑈 ∈ 𝑊() ∶ 𝐸(𝑈) = 𝐼𝜆, 𝑄(𝑈) = 𝜆 > 0}.

Thus, the advantage of our approach using the period function is that we can demonstrate the existence of positive single-
lobe states for any 𝑐 ∈ ℝ.
The orbital stability of the positive single-lobe states established in Theorem 5.1 is based on the framework of Grillakis
et al. in [30] adapted to the tadpole graph and so via a splitting eigenvalue method and tools of the extension theory of
Krein–von Neumann for symmetric operators and the Sturm comparison theorem we identify the Morse index and the
nullity index of a specific linearized operator around a positive single-lobe state which is a fundamental ingredient in
this endeavor. For the case 𝑍 ≠ 0 in (1.8) and by supposing the existence of a positive single-lobe state, is possible to obtain
similar results for (2, 𝐷𝑍) as in Theorem 1.4. Statements (1) − (3) in Theorem (1.3) are also true for (1, 𝐷𝑍) (see Section 3
in [8]). Moreover, if we define the quantity for the shift 𝑎 = 𝑎(𝑍)

𝛼(𝑎) =
𝜓′′𝑐 (𝐿)

𝜓′𝑐(𝐿)
+ 𝑍 = 1 − 𝑎

2

𝑎
+ 𝑍,

then, the kernel associated with (1, 𝐷𝑍) is trivial in the following cases: for 𝛼 ≠ 0 or 𝛼 = 0 in the case of admissible
parameters 𝑍 satisfying 𝑍 ≦ 0 (see Theorem 1.3 and Lemma 3.5 in [8]). The existence of these positive single-lobe state
profiles with 𝑍 ≠ 0 is more challenging and will be addressed in future work. Our approach has a prospect of being
extended to study stability properties of other standing wave states for the NLS-log on a tadpole graph (by instance, to
choose boundary conditions in the family of 6-parameters given in (1.5)) or on another non-compact metric graph such as

FIGURE 7 A looping edge graph with 𝑁 = 5 half-lines.
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a looping edge graph (see Figure 7), namely, a graph consisting of a circle with several half-lines attached at a single vertex
(see [8, 9, 14]).
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Appendix A
A.1 Classical Extension Theory Results
The following results are classical in the extension theory of symmetric operators and can be found in [39, 42]. Let𝐴 be a closed densely
defined symmetric operator in the Hilbert space 𝐻. The domain of 𝐴 is denoted by 𝐷(𝐴). The deficiency indices of 𝐴 are denoted by
𝑛±(𝐴) ∶= dim ker(𝐴∗ ∓ i𝐼), with𝐴∗ denoting the adjoint operator of𝐴. The number of negative eigenvalues counting multiplicities (or
Morse index) of 𝐴 is denoted by 𝑛(𝐴).

TheoremA.1 (von-Neumann decomposition). Let 𝐴 be a closed, symmetric operator, then

𝐷(𝐴∗) = 𝐷(𝐴) ⊕−𝑖 ⊕+𝑖 . (A.1)
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with±𝑖 = ker(𝐴∗ ∓ 𝑖𝐼). Therefore, for 𝑢 ∈ 𝐷(𝐴∗) and 𝑢 = 𝑥 + 𝑦 + 𝑧 ∈ 𝐷(𝐴) ⊕−𝑖 ⊕+𝑖 ,

𝐴∗𝑢 = 𝐴𝑥 + (−𝑖)𝑦 + 𝑖𝑧. (A.2)

Remark A.2. The direct sum in (A.1) is not necessarily orthogonal.

PropositionA.3. Let𝐴 be a densely defined, closed, symmetric operator in someHilbert space𝐻 with deficiency indices equal to𝑛±(𝐴) = 1.
All self-adjoint extensions 𝐴𝜃 of 𝐴may be parametrized by a real parameter 𝜃 ∈ [0, 2𝜋) such that

𝐷(𝐴𝜃) = {𝑥 + 𝑐𝜙+ + 𝜁𝑒𝑖𝜃𝜙− ∶ 𝑥 ∈ 𝐷(𝐴), 𝜁 ∈ ℂ},

𝐴𝜃(𝑥 + 𝜁𝜙+ + 𝜁𝑒𝑖𝜃𝜙−) = 𝐴𝑥 + 𝑖𝜁𝜙+ − 𝑖𝜁𝑒𝑖𝜃𝜙−,

with 𝐴∗𝜙± = ±𝑖𝜙±, and ‖𝜙+‖ = ‖𝜙−‖.
The following proposition provides a strategy for estimating the Morse-index of the self-adjoint extensions (see [39, 42]-Chapter X).

Proposition A.4. Let𝐴 be a densely defined lower semi-bounded symmetric operator (i.e.,𝐴 ≥ 𝑚𝐼) with finite deficiency indices, 𝑛±(𝐴) =
𝑘 < ∞, in the Hilbert space𝐻, and let 𝐴 be a self-adjoint extension of 𝐴. Then, the spectrum of 𝐴 in (−∞, 𝑚) is discrete and consists of, at
most, 𝑘 eigenvalues counting multiplicities.

The next proposition can be found in Naimark [39] (see Theorem 9).

Proposition A.5. All self-adjoint extensions of a closed, symmetric operator which has equal and finite deficiency indices have one and the
same continuous spectrum.

A.2 Perron–Frobenius Property for 𝜹-Interaction Schrödinger Operators on the Line
In this section, we establish the Perron–Frobenius property for the unfolded self-adjoint operator ̃ in (4.11),

̃ = −𝜕2𝑥 + (𝑐 − 2) − Log(𝜓2even) = −𝜕2𝑥 + (|𝑥| + 𝑎)2 − 3 (A.3)

on 𝛿-interaction domains, namely,

𝐷𝛿,𝛾 = {𝑓 ∈ 𝐻2(ℝ − {0}) ∩ 𝐻1(ℝ) ∶ 𝑥2𝑓 ∈ 𝐿2(ℝ), 𝑓′(0+) − 𝑓′(0−) = 𝛾𝑓(0)} (A.4)

for any 𝛾 ∈ ℝ. Here, 𝜓even is the even extension to the whole line of the Gausson tail-soliton profile 𝜓𝑎(𝑥) = e
𝑐+1
2 e−

(𝑥+𝑎)2

2 , with 𝑥 > 0,
𝑎 > 0. Since

lim|𝑥|→+∞
(|𝑥| + 𝑎)2 = +∞,

operator ̃ has a discrete spectrum, 𝜎(̃) = 𝜎𝑑(̃) = {𝜆𝑘}𝑘∈ℕ (this statement can be obtained similarly using the strategy in the proof
of Theorem 3.1 in [19]). In particular, from Sections 2 and 3 in Chapter 2 in [19] adapted to (̃, 𝐷𝛿,𝛾) for 𝛾 fixed (see also Lemma 4.8
in [12]) we have the following distribution of the eigenvalues 𝜆0 < 𝜆1 < ⋅ ⋅ ⋅ < 𝜆𝑘 < ⋅ ⋅ ⋅, with 𝜆𝑘 → +∞ as 𝑘 → +∞ and from the semi-
boundedness of 𝑉𝑎 = (|𝑥| + 𝑎)2 − 3 we obtain that any solution of the equation ̃𝑣 = 𝜆𝑘𝑣, 𝑣 ∈ 𝐷𝛿,𝛾 , is unique up to a constant factor.
Therefore, each eigenvalue 𝜆𝑘 is simple.

TheoremA.6 (Perron–Frobenius property). Consider the family of self-adjoint operators (̃, 𝐷𝛿,𝛾)𝛾∈ℝ. For 𝛾 fixed, let 𝜆0 = inf 𝜎𝑝(̃) be
the smallest eigenvalue. Then, the corresponding eigenfunction 𝜁0 of 𝜆0 is positive (after replacing 𝜁0 by −𝜁0 if necessary) and even.

Proof. This result can be obtained by following the strategy in the proof of Theorem 3.5 in [19]. Here, we give another approach via a
slight twist of standard abstract Perron-Frobenius arguments (see Proposition 2 in Albert et al. [5]). The basic point in the analysis is to
show that the Laplacian operator −Δ𝛾 ≡ − 𝑑2

𝑑𝑥2
on the domain 𝐷𝛿,𝛾 has its resolvent 𝑅𝜇 = (−Δ𝛾 + 𝜇)−1 represented by a positive kernel

for some 𝜇 > 0 sufficiently large. Namely, for 𝑓 ∈ 𝐿2(ℝ)

𝑅𝜇𝑓(𝑥) = ∫
+∞

−∞
𝐾(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦
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with 𝐾(𝑥, 𝑦) > 0 for all 𝑥, 𝑦 ∈ ℝ. By the convenience of the reader, we show this main point; the remainder of the proof follows the
same strategy as in [5]. Thus, for 𝛾 fixed, let 𝜇 > 0 be sufficiently large (with −2

√
𝜇 < 𝛾 in the case 𝛾 < 0), then from the Krein formula

(see Theorem 3.1.2 in [6]) we obtain

𝐾(𝑥, 𝑦) = 1

2
√
𝜇

[
e−

√
𝜇|𝑥−𝑦| − 𝛾

𝛾 + 2
√
𝜇
e−

√
𝜇(|𝑥|+|𝑦|)].

Moreover, for every 𝑥 fixed, 𝐾(𝑥, ⋅) ∈ 𝐿2(ℝ). Thus, the existence of the integral above is guaranteed by Holder’s inequality. Moreover,
𝑥2𝑅𝜇𝑓 ∈ 𝐿

2(ℝ). Now, since 𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥), it is sufficient to show that 𝐾(𝑥, 𝑦) > 0 in the following cases.

1. Let 𝑥 > 0 and 𝑦 > 0 or 𝑥 < 0 and 𝑦 < 0: for 𝛾 ≧ 0, we obtain from 𝛾

𝛾+2
√
𝜇
< 1 and |𝑥 − 𝑦| ≦ |𝑥| + |𝑦|, that𝐾(𝑥, 𝑦) > 0. For 𝛾 < 0 and

−2
√
𝜇 < 𝛾, it follows immediately 𝐾(𝑥, 𝑦) > 0.

2. Let 𝑥 > 0 and 𝑦 < 0: in this case,

𝐾(𝑥, 𝑦) = 1

𝛾 + 2
√
𝜇
e−

√
𝜇(𝑥−𝑦)

> 0

for any value of 𝛾 (where again −2
√
𝜇 < 𝛾 in the case 𝛾 < 0).

This finishes the proof. □

A.3 Orbital Stability Criterion
For the convenience of the reader, in this subsection we adapt the abstract stability results from Grillakis et al. in [30] for the case of
the NLS-log on a tadpole graph. This criterion was used in the proof of Theorem 1.5 for the case of standing waves that are positive
single-lobe states.

Theorem A.7. Suppose that there is 𝐶1-mapping 𝑐 → (𝜙𝑐, 𝜓𝑐) of standing-wave solutions for the NLS-log model (1.2) on a tadpole graph.
We consider the operators 1 and 2 in (1.17). For 1 suppose that the Morse index is one and its kernel is trivial. For 2 suppose that it is a
non-negative operator with kernel generated by the profile (𝜙𝑐, 𝜓𝑐). Moreover, suppose that the Cauchy problem associated with the NLS-log
model (1.2) is globally well-posed in the space𝑊 in (1.12). Then, 𝑒𝑖𝑐𝑡(𝜙𝑐, 𝜓𝑐) is orbitally stable in𝑊 if 𝑑

𝑑𝑐
||(𝜙𝑐, 𝜓𝑐)||2 > 0.
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