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ABSTRACT

This work aims to study some dynamical aspects of the nonlinear logarithmic Schrédinger equation (NLS-log) on
a tadpole graph, namely, a graph consisting of a circle with a half-line attached at a single vertex. By considering
Neumann-Kirchhoff boundary conditions at the junction, we show the existence and the orbital stability of standing
wave solutions with a profile determined by a positive single-lobe state. Via a splitting-eigenvalue method, we identify
the Morse index and the nullity index of a specific linearized operator around a positive single-lobe state. To our
knowledge, the results contained in this paper are the first to study the (NLS-log) on tadpole graphs. In particular,
our approach has the prospect of being extended to study stability properties of other bound states for the (NLS-log)
on a tadpole graph or other non-compact metric graph such as a looping-edge graphs.

MATHEMATICS SUBJECT CLASSIFICATION (2020) 35Q51, 35Q55, 81Q35, 35R02 (Primary), 47E05 (Secondary)

1 | Introduction
The following Schrodinger model with a logarithmic nonlinearity (NLS-log)
i0,u + Au + uLog|u|?> = 0, 1.1)

where u = u(x,t) : R¥Y xR = C, N > 1, was introduced in 1976 by Bialynicki-Birula and Mycielski [20] who proposed
a model of nonlinear wave mechanics to obtain a nonlinear equation which helped to quantify departures from the
strictly linear regime, preserving in any number of dimensions some fundamental aspects of quantum mechanics, such
as separability and additivity of total energy of noninteracting subsystems. The NLS model in (1.1) equation admits
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FIGURE 1 | Tadpole graph.

applications to dissipative systems [32], quantum mechanics, quantum optics [21], nuclear physics [31], transport
and diffusion phenomena (e.g., magma transport) [27], open quantum systems, effective quantum gravity, theory of
superfluidity, and Bose-Einstein condensation (see [31, 45], and references therein).

The analysis of nonlinear evolution PDEs models on metric graphs has potential applicability in the analysis of physical
models for modeling particle and wave dynamics in branched structures and networks. Since branched structures and
networks appear in different areas of contemporary physics with many applications in electronics, biology, material
science, and nanotechnology, the development of effective modeling tools is important for the many practical problems
arising in these areas (see [18], and references therein). Nevertheless, real systems can exhibit strong inhomogeneities
due to different nonlinear coefficients in different regions of the spatial domain or to a specific geometry of the spatial
domain. Thus, we will chose a “simple” metric graph-tool such as the tadpole to discover several characteristics of the
NLS-log model.

The NLS-log (N = 1) on metric graphs has been studied by several authors in the recent years (see [10, 12, 13, 16, 17],
and reference therein). Two basic metric graphs I';, i = 0, 1, were examined. For I'y = (—o0, 0) U (0, +00) with boundary
§-or &’-interactions at the vertex v = 0, the existence and orbital (in)stability of standing wave solutions with a Gausson
profile were established. A similar study was also conducted for I'; = U?]:l(o, +00), known as a star metric graph with the
common vertex v = 0.

In this work, we study issues related to the existence and orbital stability of standing wave solutions of the NLS-log (N = 1)
on a tadpole graph, specifically the vectorial model

i0,U + AU + ULog|U|?> = 0. 1.2)

defined on a graph comprising a ring with one half-line attached at one vertex point (see Figure 1).

Thus, if in the tadpole graph, the ring is identified by the interval [-L, L] and the semi-infinite line with [L, +c0), we
obtain a metric graph G with a structure represented by the set E = {eg, e;} where ey = [-L,L] and e; = [L, +), which
are the edges of G and they are connected at the unique vertex v = L. G s also called a lasso graph (see [28], and references
therein). In this form, we identify any function U on G (the wavefunctions) with a collection U = (u,).cg of functions
u, defined on the edge e of G. In the case of the NLS-log in (1.2), we have U(x,,t) = (u.(X,, t)).cr and the nonlinearity
ULog|U|?, acting componentwise, i.e., for instance (ULog| U|2) o = Ue Log|ue|2. The action of the Laplacian operator A on
the tadpole G is given by

—A 1 (Ue)ecE — (_ue’z/)ee[E- (1.3)
Several domains make the Laplacian operator self-adjoint on a tadpole graph (see [14, 18, 28, 29],). Here, we will consider
a domain of general interest in physical applications. In fact, if we denote a wavefunction U on the tadpole graph G as
U=(®,%),with® : [-L,L] > Cand ¥ : [L,+o0) — C, we define the following domains for —A:
Dy ={U € H*(G) : ®(L) = ®(-L) = ¥(L), and, ®'(L) — ®'(-L) = ¥/(L+) + Z¥(L)}, (1.4)
withZ € Rand foranyn >0,n € N,
The boundary conditions in (1.4) are called of §-interaction type if Z # 0, and of flux-balanced or Neumann-Kirchhoff
condition if Z = 0 (with always continuity at the vertex). It is not difficult to see that (—A, Dz)zcr represents a one-

parameter family of self-adjoint operators on the tadpole graph G. We note that it is possible determine other domains
where the Laplacian is self-adjoint on a tadpole (see [18]). In particular, using the approach in Angulo&Munoz [14], we
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FIGURE 2 | A positive single-lobe state profile for the NLS-log model on ¢.

can obtain domains that can be characterized by the following family of 6-parameters of boundary conditions

O(-L) = O(L), (1 —m3)®(L) = my¥(L) + ms¥'(L),
®'(L) = 20'(~L) = m®(-L) + A;¥(L) + A,¥'(L) and 1.5)

®'(L) — A3V (L) = mg®(—L) + m;¥(L),

2m3+mymsms 2+myms
m,

and A3 =

4
for my = ms = 0 and my = 1, we get the so-called §-interaction conditions in (1.4). Moreover, for m; = mg = m; =0,
ms = 1, my = 2, and ms arbitrary, we get the following §'-interaction type condition on a tadpole graph

Al =mgmg — msmsy, A2 = MsMg — , My, M3, My, M5, Mg, M7 € R and my ;é 0. Note that

®'(-L) = @' (L) = ¥'(L), ®(L)=d(-L) and

(1.6)
W(L) = —%‘P’(L).

Now, a problem of general interest is the interaction between standing waves in spatially confined systems and those in
large or unbounded reservoirs (so we can say that a tadpole is a configuration that fulfills these characteristics). Our main
interest here will be to study some dynamics aspects of (1.2) such as the existence and orbital stability of standing wave
solutions given by the profiles U(x, t) = eiCtG)(x), withc € R, 0 = (¢,9) € Dz, Z = 0, and satisfying the NLS-log vectorial
equation

—A® + cO — OLog(|0]%) = 0. 1.7)

More explicitly, for ¢ and ¢ real-valued we obtain the following system, one on the ring and the other one on the half-line,
respectively,

—¢"(x) + cp(x) — Log(¢*(x))p(x) =0, x € (=L, L),
—3""(x) + cp(x) = Log@*()P(x) = 0,  x € (L, +0),
¢(L) = ¢(=L) = (L),

¢'(L) - ¢'(=L) = P/ (L+).

1.8)

The critical challenge in solving (1.8) lies in the component ¢ on [—L, L] (we note that explicit profiles for ¢ are not known).
The component of ¥ is given by a translated Gausson-profile (see [11, 23]) of the form

c+l —(x—L+a)2
P(x)=e 2 e 2 , a#0, ceR, x>1L. (1.9)

Among all profiles for (1.8) (see, for instance, Figures 2 and 3 for the case of ¢- profiles), we focus on positive single-lobe
states. More precisely, we define (see Figure 2).

Definition 1.1. The standing wave profile ® = (¢,%) € Dy is said to be a positive single-lobe state for (1.8) if each
component is positive on every edge of G, the maximum of © is achieved at a single internal point symmetrically located
on [—L, L], and ¢ is monotonically decreasing on [0, L]. Moreover, 1 is strictly decreasing on [L, +0).
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The study of ground or bound states on general metric graphs for the NLS model with a polynomial nonlinearity
i0,U+AU+ |U*’U=0, p>0 (1.10)

has been investigated in [1-4, 8, 9, 22, 33-35, 40, 41, 43]. To our knowledge, the results contained in this paper are the first
in studying the NLS-log on tadpole graphs.

Our focus in this work is to study the existence and the orbital stability for the NLS-log model of positive single-lobe states in
the case Z = 0 (for the case Z # 0, we refer the reader to Section 7). For the existence, we use tools from dynamical systems
theory for orbits on the plane, based on the period function introduced in [34, 35]. To our knowledge, this approach has
not been applied in the literature to logarithmic nonlinearities, and a non-trivial analysis will be required. For the stability,
we follow the abstract stability framework by Grillakis et al. [30]. For clarity, we outline the main steps of this framework
for standing wave solutions for NLS-log models on a tadpole graph (see Theorem A.7 in the Appendix). Subsequently, we
will present our main results.

To begin, we note that the basic symmetry associated with the NLS-log model (1.2) on tadpole graphs is the phase
invariance: if U is a solution of (1.2), then €°U is also a solution for any 6 € [0,27). Thus, we define orbital stability
for (1.2) as follows (see [30]).

Definition 1.2. The standing wave U(x, t) = el (¢(x), (x)) is said to be orbitally stable in a Banach space X if for any
¢ > 0 there exists 7 > 0 with the following property: if U, € X satisfies ||Uy — (@, ¥)||x < 7, then the solution U(¢) of (1.2)
with U(0) = U exists for any ¢t € R and

inf  ||U(t) — el%(g, <e.
flel[lg eel[g,mll () —e®(@Plx <€

Otherwise, the standing wave U(x, t) = el (¢(x), (x)) is said to be orbitally unstable in X.

The space X in Definition 1.2 for the model (1.2) will depend on the domain of the action of —A, namely, Dy, and a specific
weighted space. Indeed, we will consider the following spaces:

E©Q)={(f.g) €eHY(Q): f(-L)=f(L)=g(L)} “continuous energy-space”, 1.11)
and the Banach spaces W(C) and W defined by

W(G) ={(f.8) € £(G) : |g|°Log|g|* € L(L, +o0)}

— (1.12)
W ={(f,2) € £©) : xg € L>(L, +c0)}.
We note that W ¢ W(C) (see Lemma 2.1). Due to our local stability analysis (not variational type, see Section 7 for
discussion on this approach), we will consider X = W in Definition 1.2.

Next, we consider the following two functionals associated with (1.2):

L +0o0
BW)=IVUIZ, , - [ 1fiPLogfidx = [ 1faPLogfadx,  (enerey) )
-L L

and

QW) = ||U||i2(g), (mass) (1.14)

where U = (f1, f2). These functionals satisfy E,Q € CL(W(C) : R) (see [23] or Proposition 6.3 in [10]) and, at least
formally, E is conserved by the flow of (1.2). The use of the space W(G) is because E fails to be continuously differentiable
on £(G) (a proof of this can be based on the ideas in [23]). Now, as our stability theory is based on the framework of Grillakis
et al. [30], E needs to be twice continuously differentiable at the profile ® € Dy. To satisfy this condition, we introduced
the space W. Moreover, this space naturally appears in the following study of the linearization of the action functional
around ©. We note that E, Q € CL(W).
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Now, for a fixed ¢ € R, let U.(x, t) = el (¢.(x), 1.(x)) be a standing wave solution for (1.2) with (¢., %) € D, being a
positive single-lobe state. Then, for the action functional

S(U) = E(U) - (c + 1)QV), Uew, (1.15)

we have S'(¢.,¥.) = 0. Next, for U = U, + iU, and W = W + iW,, where the functions Uj, Wj, j = 1,2, are real. The
second variation of S in (¢., ) is

SH(¢C:¢C)(U’ W) = (£1U17W1> + <£2U27W2>’ (116)
where the two 2 X 2-diagonal operators £ and £, are given for

L= diag(—d}c +(c—2) - Log|¢.|?, 0% + (c - 2) — Log|¢.|?)

: (1.17)
L, = diag(—02 + ¢ — Log|¢.|?, -8 + ¢ — Log|ip.|?)

These operators are self-adjoint with domain (see Theorem 3.1)
D :={(f.8) € Dy : x’g € L*([L, +0))}.

Since (¢.,%.) € D and satisfies system (1.8), Ly(¢.,¥.)' =0, so the kernel of £, is non-trivial. Moreover,
(L1(Pe, Ye)ts (Per )ty < 0 implies that the Morse index of £, n(L;), satisfies n(£;) > 1. Next, from [30] we know that
the Morse index and the nullity index of the operators £1 and £, are a fundamental step in deciding about the orbital
stability of standing wave solutions. For the case of the profile (¢.,1.) being a positive single-lobe state, our main results
are the following:

Theorem 1.3. Consider the self-adjoint operator (L1, D) in (1.17) determined by the positive single-lobe state (¢, P..). Then,

1. Perron—Frobenius property: let 8y < 0 be the smallest eigenvalue of L1 with associated eigenfunction (f s, 8g,)- Then, fg,
is positive and even on [-L, L], and 88 (x) > Owith x € [L, +0),

N

Bo is simple,

w

. the Morse index of L4 is one,
The kernel of L1 on D is trivial.

A

Theorem 1.4. Consider the self-adjoint operator (L, D) in (1.17) determined by the positive single-lobe state (¢.., ..). Then,
1. the kernel of L,, ker(L,), satisfies ker(L,) = span{(¢.,P:)}
2. L, is a non-negative operator, L, 2 0.

The proof of Theorem 1.3 will be based on a splitting eigenvalue method applied to £; := diag(L?, £%) in (1.17) on a
tadpole graph (see Lemma 4.4). More precisely, we reduce the eigenvalue problem associated with £, with domain D
to two classes of eigenvalue problems, one with periodic boundary conditions on [—L, L] for Li(l) and the other one with

Neumann boundary conditions on = [L, +o0) for E}. Thus, by using tools of the extension theory of Krein-von Neumann
for symmetric operators, the theory of real coupled self-adjoint boundary conditions on [—L, L] and the Sturm comparison
theorem, will lead to our results.

Our orbital stability result is the following:

Theorem 1.5. Consider Z = 0 in (1.8). Then, there exists a C'-mappingc € R — O, = (¢.,.) of positive single-lobe states
on G. Moreover, for ¢ € R, the orbit

{0, : 6 €[0,27)}
is stable.

The proof of Theorems 1.3 and 1.4 are given in Section 4. The orbital stability statement follows from Theorems 1.3 and 1.4
and the abstract stability framework by Grillakis et al. in [30]. For the convenience of the reader, we provide an adaptation
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FIGURE 3 | A positive two-lobe state profile on a tadpole graph.

of the abstract results in [30] to the case of tadpole graphs in Theorem A.7 (the Appendix). We note that the main challenge
in applying Theorem A.7 lies in spectral analysis, as the Vakhito-Kolokolov condition % l(de, P)II> > 0 is essentially

trivial for the NLS-log model. Definition 1.2 requires a priori information about the local/global well-posedness of the
Cauchy problem for (1.2), which is established in Section 2 for the space W in (2.1).

The existence of a C'-mapping for positive single-lobe states in Theorem 1.5 relies on the dynamical systems theory for
planar orbits via the period function for second-order differential equations (see [8, 9, 33-35, 40], and reference therein)

We would like to point out that our approach for studying positive single-lobe states for the NLS-log on a tadpole has
prospects of being used to study other standing wave profiles, such as positive two-lobe states (see [9] and Figure 3) or the
NLS-log on others metric graphs such as looping edge graphs, a graph consisting of a circle with several half-lines attached
at a single vertex (see Figure 7 in Section 7).

The paper is organized as follows. In Section 2, we establish local and global well-posedness results for the NLS-log model
on a tadpole graph. In Section 3, we show the linearization of the NLS-log around a positive single-lobe state and its
relation to the self-adjoint operators £, £,. In Section 4, we show Theorems 1.3 and 1.4 via our splitting eigenvalue lemma
(Lemma 4.4). In Section 5, we provide the proof of the existence of positive single-lobe states and their stability under
the NLS-log flow. In the Appendix, we briefly outline tools from the Krein-von Neumann extension theory, a Perron-
Frobenius property for §-interaction Schrédinger operators on the line, and the orbital stability criterion from Grillakis
et al. [30] adapted to our framework.

Notation. Let —co < a < b < +co. We denote by L?(a, b) the Hilbert space equipped with the inner product (u,v) =

/ab u(x)v(x)dx. By H"(Q) we denote the classical Sobolev spaces on Q C R with the usual norm. We denote by G the
tadpole graph parameterized by the set of edges E = {ey, e1}, where ey = [-L,L] and e; = [L,4+c0), and attached to the
common vertex ¥ = L. On the graph G, we define the spaces

LP(G) = LP(-L,L)® LP(L,+), p>1,

with the natural norms. Also, for U = (u;,g1),V = (v, h;) € L*(C), the inner product on L2(C) is defined by

L

+00 .
(U.V) = / (ORI + /L (O ()dx.

Let A be a closed densely defined symmetric operator in the Hilbert space H. The domain of A is denoted by D(A). The
deficiency indices of A are denoted by n,.(A) := dim ker(A™ ¥ iI), with A* denoting the adjoint operator of A. The Morse
index of A, denoted by n(A), is the number of negative eigenvalues counting multiplicities.

2 | Global Well-Posedness in W

In this section, we show that the Cauchy problem associated with the NLS-log model on a tadpole graph is globally well-
posed in the space W. From Definition (1.2), this information is crucial for the stability theory. We start with the following
technical result.

Lemma 2.1. Let W(G) and W be the Banach spaces defined by

W(Q) ={(f,8) € £(Q) : Ig|*Loglg|* € L} (L, +o0)}, o
21
W ={(f.8) € £©) : xg € L*(L,+o0)}.
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Then, W C w(0).

Proof.
1. Let us start by proving that W c L1(C). For (¢, ¢) € W and the Cauchy-Schwarz inequality we have

L +o0 L +0o0 1
[ twiaxs [ igidx= [ piax+ [ xigigax
-L L -L L
1
+o0 +00 2
21£12 1
< 2L sup |o|+ / x*|&|~dx / —2dx < oo.
[-L,L] L L X

2. Letagain (¢, &) € W, then

+o0
/L 1€ 2 Log|¢ldx = |§|2|Log|§||dx+/ EPILoglelldx.  (22)

/{XE[L,+°0)I 1§Col<1} {x€lL,+00):1§(x)1>1}

Note also that

1
13€9]

[Log|§(0)l| < for 1§(x)] <1, and |Log|§(x)| < [§(x)| for [§(x)| > 1. (23)

Since ¢ € HY([L, +)), there exists k > L such that |£]| < 1 for [L,+) \ [L,k]. Thus, from (2.2), (2.3), and the
inclusion W c L(G) we get

+0o
/ |§|2|Log|§||dxs/ |§|dx+/ |§|dx+/ 1€ dx
L {xe(k,+0):|&|<1} {x€[L,k]:|&|<1} {x€[L,k]:|&|>1}

<

/ |€ldx + (k — L)+ (k — L) sup |£]? < 0.
{xe(k,+0):|&|<1} [L,k]

The assertion is proved. O

Theorem 2.2. For any U, € W, there is a unique solution U € C(R, w) of (1.2) such that U(0) = Uy. Furthermore, the
conservation of energy and mass hold, i.e., for any t € R, we have E(U(t)) = E(Ug) and Q(U(t)) = Q(Uy).

Proof. The idea of the proof is to use the strategy proposed in [25]-Section 2 (see also [24, 26]) and adapted to the NLS-
log model on the tadpole graph. As the analysis follows the Cazenave’s framework which involves multiples steps, we
highlight the key modifications for our case. In this way, we introduce the “reduced” Cauchy problem

{iatun +AU, + U, F,(IU,?) =0, -

U,0)=UyeW,

where for Uy, = (uy, Up), UpFp(1Up|?) = Wnfn(unl®), vafr(10a]?)), fr(s) = inf{n, sup{—n, f(s)}}, and f(s) = Log(s), s >
0. Initially, we show that the problem in (2.4) has a unique global solution for any U, € £(G) and fixed n. To use
Theorem 3.3.1 in [24], define the mapping g, : L>(C) — L*(G), g,(U) = UF,(|U|?), which is Lipschitz continuous on
bounded sets of L?(G) (since each f,, is Lipschitz on R*). For p,(s) = /OS fn(s)ds, define P,(w) = p,(lw|?), yielding
P (w) = |w|f,(Jw|?) formally. For G,(U) = (P,(uw), P,(v)) with U = (u,v) € £(G), we get G (U) = g,(U) (where the
derivative of G,, is computed component-wise). Since A with domain D is self-adjoint and non-positive operator in L*(G)
(see Remark 2.3), Theorem 3.3.1 implies that for any U, € £(G) there exists a unique global solution U, of (2.4) such that
U, € C(R, £(0)) N CH(R, £(C)). Furthermore, for (2.4), the conservation of energy and charge hold, i.e., forall t € [-T, T]

— 2 _ 2 _
Q(Un(t)) - ”Unz(t)”Lz(g)L— ”UOH;Z(Q)’ E_:zfoUn(t)) ; En(UO)a (2.5)
En(Q) = IVUI2, o = [ Pallul)dx = [ Pa(ol)dx, U = (@,v),
7 of 27
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and so we also obtain that
||Un||L°°([—T,T],€(g)) <C, forall n. (2.6)

Note that the last statement is a consequence of U, € Wc W(G) by Lemma 2.1 and from Lemmas 2.3.2, 2.3.3, and 2.3.4
in [25]. Now, for Cg = {(f,g) € L>((-L,L) x (L,R)) : f(-L) = f(L) = g(L)} with R > L, we consider the Hilbert spaces
Er ={(p.9 : (p.q) € (H'(-L,L) x H'(L,R)) N Cg} and the dual space of &g, £,. We note that as for any a,b € R, the
embedding H'(a, b) < C([a, b]) is compact, we get initially that Cg is closed in H' (=L, L) x H'(L, R) and so £ is a Hilbert

space. Further, from the embedding relations &g & . Cr & é‘l’2 follows by the Aubin-Lions theorem ([38]) implies that
compac

J=1F : F € LX(-T,T), &0, F' = S € 12(-T,7), £},

is a Banach space compactly embedded in L?([-T, T], Cg). By following a similar analysis to Lemma 2.3.5 in [25] (see
also Lemma 9.3.6 in [24]), we get that Uy, » U in L*([0, T], £(G)) weak-*. Therefore, we get that U is a solution of (1.2)
in the sense of distributions. Moreover, the conservation of charge Q in (1.14) holds and so Unk(t) — U(t) strong in C =
{(f,g) € L>(-L,L) x (L, +)) : f(=L) = f(L) = g(L)}. We have also that energy E in (1.13) is conserved via a standard
monotonicity argument (see section 2.4 in [25]). Thus, the inclusion U € C(R; £((G)) follows from conservation laws.
Lastly, for U, = (g, h), the condition xh € L?(L, +o0) implies xv € L*(L, +c0) (for the solution U = (u, v)), repeating the
argument of Lemma 7.6.2 in [26]. This finishes the proof. O

Remark 2.3. By considering (—Az, D7), with —A; = —A and D in (1.4), it is possible to see the following (see [15, 40]):
for every Z € R, the essential spectrum of the self-adjoint operator —Ay is purely absolutely continuous and geg(—Ay) =
Oac(—Az) = [0,+00). If Z > 0, then —A7 has exactly one negative eigenvalue, i.e., its point spectrum is op(—=Az) = {—9% I3
where ¢, > 0 is the only positive root of the transcendental equation

¢(2tanh(¢L)+1)-Z =0,
and with the eigenfunction

cosh(xg,), x € [-L,L]
(I)Z = .
e ¥z, x €[L,+o0)

If Z<0, then —Az has no point spectrum, o,(—Az) = @. Therefore, for Z=0 we have that —Az is a non-
negative operator.

3 | Linearization of NLS-Log Equation

For fixed ¢ € R, let U(x, t) = el¢! ©.(x) be a standing wave solution for (1.2) with ©.(x) = (¢.(x),p.(x)) € D, being a
positive single-lobe state. We consider the action functional S, = E + (¢ + 1)Q, thus ©, is a critical point of S.. Next, we
determine the linear operator associated with the second variation of S, calculated at ©., which is crucial for applying
the approach in [30]. To express S/ (®,), it is convenient to split u,v € W into real and imaginary parts: u = u; + iu,,
U = vy + iv,. Then, we get S/ (®.)(u, v) can be formally rewritten as

S/ (©:)(u,v) = By (u1,v1) + By (uz, vy), (.1
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where

L +o0 L
B tua) = [ paxs [ gqaxt [ pie-2-Logiglax
—-L L —-L
+0oo
+ / gql(x — L+ a)* - 3]dx, (3.2)
L

+00

L +00 L
By((f, ), (h. ) = / fidx /L ¢qdx + / Fhle =~ Loglgeldx -+ /L gql(x - L+ a)? — 1]dx,

anddom (B;) = W x W, i € {1, 2}. Note that the forms B;, i € {1, 2}, are bilinear bounded from below and closed. Therefore,
by the first representation theorem (see [36], Chapter VI, Section 2.1), they define operators £, and L, such that for
ie{1,2}
dom(L;) ={v e W : Jw € L3(Q) s.t. Vz € W, B;(v, z) = (w, z)}
~ (3.3)
Liv=w.
Theorem 3.1. The operators L, and L, determined in (3.3) are given by
L, = diag(—02 + (¢ — 2) — Logl$.|?, 02 + (x — L + a)* - 3)
L, = diag(—02 + ¢ — Log|¢.|*, 02 + (x — L + a)* — 1)

on the domain D = {(f,g) € Dy : x>g € L*(L,+co0)}. Thus, L; = L; defined in (1.17).

Proof. Since the proof for £, is similar to the one for £, we deal with £;. Let B; = B® + B!, where B’ : £(G) x £(C) = R
and B! : W x W — R are defined by

B((f, ). (h, @) = ((f".&"). (W, q")), BN(f.8),(h, @) = (V1(f. ) (h,q)), (34)

and V(f,g) = ([c — 2 — Log|¢.(x)|?1f, [(x — L + a)* — 3]g). We denote by L (resp. £!) the self-adjoint operator on L>(G)
associated (by the first representation theorem) with B (resp. B!). Thus,

dom(£%) = {v € £(©) : Fw € L*(C)s.t. Vz € £(C), B°(v, ) = (w, z)}
£% = w.

We claim that £° is the self-adjoint operator

0 d?
LY =—-A=——— dom(-A) = D,.
—+ dom(-A) = Dg

Indeed, let v = (v1,v;) € Dy and w = —v"" € L?(G). Then for every z = (21, z;) € £(C) and using integration by parts, we
have

L +o0
Bv,z) = (V,z)) = / v)zjdx +/ vhzldx
-L L

L 400
= v, (L)z1(L) — v} (=L)z1(=L) — v}(L)z>(L) - /_L vz} dx — /L vy zhdx
=(-v",2) = (w,2).

Thus, v € dom (£°) and £% = w = —v”’ = —Av. Hence, —A C £°. Since —A is self-adjoint on Dy, £° = —A.
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Again, by the first representation theorem,

dom(£Y) ={v e W : 3w € L%(G) s.t. Vz € W, B (v, 2) = (w, z)}

£lv=w.
Note that £! is the self-adjoint extension of the following multiplication operator for u = (f,g)

Mu = Vy(f,g), dom(M) = {u € E©) : Vyu € LA(G)}.

Indeed, for v € dom (M) we have v € W, and we define w = Vv € L*(G). Then for every z € W we getBl(v, z) =(w, z).
Thus, v € dom (£!) and £'v = w = V;v. Hence, M C L. Since M is self-adjoint, £! = M. The proof of the theorem is
complete. O

4 | Proofof Theorems 1.3 and 1.4

Let us consider one a priori positive single-lobe state (¢, 1.) solution for (1.8) with ¢ € R. For convenience, we denote
¢ = ¢. and P = ... Thus, the linearized operator £, in Theorem 3.1 becomes as

£, = diag(—92 + (c — 2) — Log|¢|?, =02 + (c — 2) — Log|¢|?) (4.1)
with domain D = {(f,g) € D, : x*>g € L*>([L, +0))}.

Next, for (f,g) € D define h(x) = g(x + L) for x > 0. Then h(0) = g(L) and h'(0) = g’(L). Therefore, the eigenvalue
problem £(f,g)" = A(f,g)" is equivalent to

Lo f(x)=4f(x), x € (-L,L),

L11h(x) = Ah(x), x € (0,+00), (4.2)
(f’ h) € D+7
where
Lo1=-0%+(c—2)—Log|¢|, L£17=-02+(c—2)— Loglpal? (4.3)

c+l _(x+a)2
andy,(x)=e 2 e 2 ,withx >0, a > 0.In this form,

£y, =-02+(x+a)-3. (4.4)
The domain D, is given by
Dy ={(f,h) € X*(=L,L) : f(L) = f(=L) = h(0), f'(L) = f'(=L) = h'(0), x*h € L*(0, +o0)}, (4.5)
with X"(~L,L) = H"(-L,L) @& H"(0, +c0), n € N. We note that (¢, %) € D.

For notational convenience, let 3, = 1 4. Define £ = diag(L ;, £; ;) with domain D, . The proof of Theorem 1.3 will
follow from Sections 4.1 and 4.2.

4.1 | Perron-Frobenius Property and Morse Index for (L ,,D,)

Initially, we show that n(£,) 2 1. Since (¢, %) € D, and

(Lo @) =-2| [ $0odx + [, p2edx] <o, (46)
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the mini-max principle implies n(£,) = 1. Now, we note that is possible to show, via the extension theory for symmetric
operators of Krein-von Neumann, that n(£,) < 2.

Theorem 4.1. The Morse index associated with (L., D..) is one. Consequently, the Morse index for (L1, D) is also one.

The proof of Theorem 4.1 is based on the following Perron-Frobenius property (PF property) for (£, D,). Our approach
is grounded in ordinary differential equation (ODE) techniques (oscillation theorems) and the extension theory for
symmetric operators proposed in [8, 9] for the NLS model (1.10). We note that significant adjustments to this approach are
necessary for the NLS-log model. The proof of Theorem 4.1 is given at the end of this section.

411 | Perron-Frobenius Property for (L ,D,)

We start our analysis by defining the quadratic form Q associated with operator £, on D, namely, Q : D(Q) - R, with

L +00
Qmo=/;m¥+vwwx+4 @) + Wy ¢dx, @.7)

V4 = (c—2) — Log|¢|%, Wy = (c — 2) — Log||* = (x + a)* — 3, and D(Q) defined by

D(Q) ={(n,$) € X' (-L,L) : n(L) = n(-L) = {(0), x{ € L*(0,+0)}. (4.8)

Theorem 4.2. Let 1y < 0 be the smallest eigenvalue for £ on D, with associated eigenfunction (7 1o ¢ 1o ). Then, n 1o and
¢ 1o @re positive functions. Moreover, 1),,, is even on [-L,L].

Proof. The strategy of the proof is based on tools used in [8, 9] for the case of the NLS model in (1.10). For the NLS-log
model, significant changes are required, and for the reader’s convenience, we highlight in the differences in the approach.
We split the proof into several steps.

1. The profile ¢ 1o is not identically zero: indeed, suppose ¢ 1o = 0, then 7, satisfies

[/0,177/10(35) = /‘1077/10(')()’ X € (_LaL)’
Nao (L) = (=L) =0 (4.9)
UNOELNC!

From the Dirichlet condition and oscillation theorems of the Floquet theory, ; , must be odd. By the Sturm-Liouville
theory, there is an eigenvalue 6 for £ ; such that & < Ay, with an associated eigenfunction £ > 0 on (-L, L), and

§(-L)=§@)=0.

Let Op;; be the quadratic form associated with L, ; with Dirichlet domain, i.e., Qpj; - Hé(—L,L) — R defined by

L
%ﬂnaﬂg¥+wﬂw. (4.10)

Then, Qp; (&) = Q(£,0) = AplI€]1? and so, 8 2 4. This is a contradiction.
2. {;,(0) # 0: suppose {;,(0) = 0 and we consider the odd-extension {,qq for 5, and the even-extension eye of the
tail-profile ¢, on all the line. Then, ¢,qq € H>(R) and e, € H*(R — {0}) N H'(R). Next, we consider the following

unfold operator £ associated with L1,
L =-33 + (¢ — 2) — Log|even|* = =35 + (x| + a)* - 3, (4.11)

on the §-type interaction domain

Ds, ={f € H*R-{0DNH'(R) : x*f € L*R), f'(0+) — f'(0~) = £ (0)} (4.12)
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for any y € R. By the extension theory for symmetric operators, the family (Z, Ds y)yer represents all the self-adjoint
extensions of the following symmetric operator (M, D(M,)) defined by

Mo=L, DMy ={f €HXR): x*f € L>(R), f(0) = 0},

with deficiency indices given by n, (M) = 1. For clarity, we summarize these results (see [12]). Consider the Hilbert
spaces scale associated with the self-adjoint operator

L=-32+(x|+a)? DKL) ={f €H*R): x*f € L*(R)},
Le, Hy(L) ={f € L2(R) : [Iflls2 = (£ +D2f]| < oo}, s 2 0, with
< CHy(L) C Hy(L) € LA(R) € Hy(L) C H_(L) C -+ .

The dual space of Hy(£) will be denoted by H_ (L) = H,(L) . In this form, we get that the §-functional § : H,(£) — C
defined by 8(x) = ¥(0) belongs to H1(L)' = H_;(L) (by Sobolev embedding) and so § € H_,(£). By Lemma 1.2.3 in
[7], the restriction My = L — 3 to D(M,) is a densely defined symmetric operator with deficiency indices n, (M) = 1.
Then, by Proposition A.3 (the Appendix) and Remark 4.2—item (iii) in [12], we can characterized all the self-adjoint
extensions of (Mg, D(M,)) as (L, Dsy)yeRr-

Now, the even tail-profile eye, satisfies Pl (x) # 0 for all x # 0, and so from the well-defined relation

Mof == | e (5= )|, 50 @13

!/ /
¢even lwbeven

we can see easily that (Mg f, f) 2 0 for all f € D(M,). By extension theory (Proposition A.4 in the Appendix) we
obtain that the Morse index for the family (L, Ds,,) satisties n(L£) £1,forally € R. Since {yqq € Ds, (for any y) and
L£¢oad = A0¢odd on R, we have n(£) = 1. Then, A is the smallest negative eigenvalue for £ on 8-interactions domains
in (4.12), and by Theorem A.6 in the Appendix (the Perron Frobenius property for £ with 8-interactions domains on
the line), {,q4q must be positive, which is a contradiction. Therefore, {;,(0) # 0.

. ¢ o - [0,+00) — R can be chosen strictly positive: Without loss of generality, assume ¢ ﬂo(o) > 0. The condition
77;0 @) - n;0<—L) = g’/’lO(O) implies

UNOELIRCS)
$2(0)

Let {even denote even extension of §; to the entire line. Then, {even € Ds 2y, and LLeven = Ao even- A similar analysis

as in item 2) above suggests that 1, is the smallest eigenvalue for (L, D5,2y0). Hence, oyen is strictly positive on R.
Therefore, {;,(x) > 0 for all x 2 0.

S M [-L,L] —» R can be chosen strictly positive: initially, we have that » 1, satisfies the following boundary condition,
/
O

77;10(11) - 77/’10(_11) = m g/lo(o) = aog/lo(o) = aO")AO(L)-

Consider the eigenvalue problem for L ; in (4.3) with real coupled self-adjoint boundary condition determined by
aeR:

‘C’O,ly(x) = ,BY(X), X € (_LsL)s
(RCq) : {¥(L) = y(-L), (4.14)
Y'(L) = y'(=L) = ay(L).

By Theorem 1.35 in Kong et al. [37] or Theorem 4.8.1 in Zettl [44], the first eigenvalue B, for (4.14) with a = o is
simple. Since (1);,,, 4o) solves (4.14), 1o 2 Bo. In the following, we show Ay = . Indeed, we consider the quadratic form
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associated with the (RCaO)-problem in (4.14), Qgc, where for h € HY(~L, L) with h(L) = h(-L),

L
Qrc(h) = / (W')? + Vgh?dx — ap|h(L)|*. (4.15)
—-L

Let§ = v{3, with v € R chosen such that §(0) = v{;,(0) = h(L). Then, (h, §) € D(Q) in (4.8). Using £11{3, = 2082,
we obtain

+0o
Ore(h) = Q(h, &) — agh(L) - / (& + Wy E2dx
0

= Q(hi 5) - ath(L) + Vzgﬁo (0)§/10 (0) - AOV2 ”g/lo ”2 (416)

= Q(h, &) - &) (OA(L) + h(LIE (0) = Ao lIEI1
= Q1. &) = AolIEI> 2 AolIAI + I1€117] = A0 IE11> = ZollAI1>.

Thus, By = 1y and so By = 4.

By the analysis above, we get that A is the first eigenvalue for the problem (RCaO) in (4.14) and thusitissimple. Then, Ao
is either odd or even. If 77, is odd, the condition 7;,(L) = 13,(=L) implies 7,,(L) = 0. However, (L) = {3,(0) > 0.
So, we must have that 7,,, is even. Now, from the oscillation theorem for the (RCOCO)—problem, the number of zeros of
Mg ON [-L,L)is 0 or 1 (see Theorem 4.8.5 in [44]). Since 7 lo(_L) > 0 and 7,,, is even, we necessarily conclude that
N > 0on[—L,L]. This completes the proof.

O
Corollary 4.3. Let Ay < 0 be the smallest eigenvalue for (L., D). Then, A is simple.
Proof. The proof is immediate. Suppose 1, is a double eigenvalue. Then, there exists an eigenfunction (f, go) associated
with 4 orthogonal to (77, ¢ 29)- By Theorem 4.2, fo, go > 0. This contradicts the orthogonality of eigenfunctions. O
4.1.2 | Splitting Eigenvalue Method on Tadpole Graphs
In the following, we establish our main strategy for studying eigenvalue problems on a tadpole graph ¢ as deduced in
Angulo [9]. More exactly, we reduce the eigenvalue problem for £, = diag(£?, E%) in (1.17) to two classes of eigenvalue

problems: one for E(l] = —6)26 + (c — 2) — Log|¢|* with periodic boundary conditions on [-L,L] and the other for the
operator E% = —a;i + (¢ — 2) — Log||? with Neumann-type boundary conditions on [L, +co).

Lemma 4.4. Let us consider (L, D) in Theorem 1.3. Suppose (f,g) € D with g(L) # 0 and L£,(f,g)! = y(f,g)", fory <0.
Then, we obtain the following two eigenvalue problems:

£9f(x) = 7f(x), x € (L, ), £lg(x) = yg(x), x > L,
f@)=(-L), f'(L)=f'(-L), g'(L+)=0.
Proof. For (f,g) € D and g(L) # 0, we have
g'(L+)

fL) = f@), fFA)-f(-L)= [ 2D

]f (L) = 6f(L),

and so f satisfies the real-coupled problem (RC,) in (4.14) with & = 6 and 8 = y. Then, from the proof of Lemma 3.4 in
[9] we obtain that 6 = 0, and thus we prove the lemma. O

Remark 4.5. From Lemma 4.4, it follows that 7 1o in Theorem 4.2 remains an even-periodic function on [-L,L] and ¢ 1o
satisfies a Neumann boundary condition on [L, +c0).
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4.1.3 | Morse Index for (L ,D.)
In the following, we provide the proof of Theorem 4.1.

Proof. We consider £, on D, and suppose n(£,) = 2 without loss of generality (note that via extension theory we can
show n(L,) £ 2). From Theorem 4.2 and Corollary 4.3, the first negative eigenvalue 4 for £ is simple with an associated
eigenfunction (5 o> ¢ /10) having positive components and 7,,, being even on [-L, L]. Therefore, for 4, being the second
negative eigenvalue for £, we need to have 4; > 4.

Let (f1,8,) € D, be an associated eigenfunction to 4;. In the following, we divide our analysis into several steps.

1. Suppose g; = 0: then f1(—L) = f1(L) = 0 and f; is odd (see step 1) in the proof of Theorem 4.2). Now, our profile-
solution ¢ satisfies

Lo1¢' =0, ¢’ isodd, ¢'(x) > 0, for x € [-L,0),

thus, since A; < 0 we obtain from the Sturm comparison theorem that there is r € (=L, 0) such that ¢'(r) = 0, which
is a contradiction. Then, g; is non-trivial.

2. Suppose g;(0+) = 0: we consider the odd-extension g; oqq € H*(R) of g; and the unfold operator L in (4.11) on the §-
interaction domains Ds , in (4.12). Then, 81.0dd € Ds , for any y and so by the Perron-Frobenius property for (£,Dsy)
(see the Appendix) we must have that n(£) = 2. But, by step 2) in the proof of Theorem 4.2 we obtain n(£) < 1 for all
¥, and so we get a contradiction.

3. Suppose g1(0+) > 0 (without loss of generality): we will see that g;(x) > 0 for all x > 0. Indeed, by Lemma 4.4 we get
g{ (0+) = 0. Thus, by considering the even-extension g eyen 0f g; on all the line and the unfold operator £ in (4.11) on

Ds o, we have that g1 cyen € Ds and so n(£) = 1. But, we know that n(£) < 1 and so 4, is the smallest eigenvalue for
(L, Ds ). Therefore, by the Perron-Frobenius property for (L, Ds ) (see the Appendix) g; is strictly positive. We note
that as Ds o = {f € H*(R) : x*f € L?(R)}, it follows from the classical oscillation theory (see Theorem 3.5 in [19])
that g1 even > 0.

4. Lastly, since the pairs (¢ 9> 70) and (g;, 4, ) satisfy the eigenvalue problem

{51,1g(x) =78(x), x>0, (4.17)

g'(0+) =0,

it follows the property that ¢ 1o and g1 need to be orthogonal (which is a contradiction). This finishes the proof.

O

4.2 | Kernelfor (L,,D)

In the following, we study the nullity index for £, on D (see item 4) in Theorem 1.3. Using the notation at the beginning
of this section, it is sufficient to show the following.

Theorem 4.6. Let us consider L. = diag(L 1, £11) on D,. Then, the kernel associated with L on D, is trivial.

Proof. Let (f, h) € D, such that £ (f, h)! = 0. Thus, since L11h=0and £1,1¢(’1 = 0, we obtain from the classical Sturm-
Liouville theory on half-lines ([19]) that there is b € R with h = b/, on (0, +00). Next, we have the following cases:

1. Suppose b = 0: then h = 0 and f satisfies L ; f = 0 with Dirichlet-periodic conditions
f@)=f(=L)=0, and f'(L)= f'(-L).
Suppose f # 0. From the oscillation theory of the Floquet theory and the Sturm-Liouville theory for Dirichlet

conditions, £y1¢' =0 on [-L,L], ¢’ is odd and ¢'(L) # 0, we get f =0 and so ker(L,) is trivial (see proof of
Theorem 1.4 in [9]).
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2. Suppose b # 0: then h(0) # 0 (h(x) > 0 without loss of generality with b < 0). Hence, from the splitting eigenvalue
result in Lemma 4.4, we obtain that f satisfies

{ﬁo,l f(x)=0, x €[-L,L], )

f@) = f(-L)=h(0)>0, and f'(L)= f'(-L),

and h’(0) = 0. The last equality implies immediately 3/ (0) = 0, therefore if we have for o = 3!/(0) that a # 0, we
obtain a contradiction. Then, b = 0 and by item 1) above ker(£, ) = {0}.

Next, we consider the case a = 0. Then, initially, by the Floquet theory and the oscillation theory, we have the following
partial distribution of eigenvalues, 8, and u,,, associated with L ; with periodic and Dirichlet conditions, respectively,

Bo < po <P1=m = B2 < pp<PBs. (4.19)
In the following, we will see 51 = 01in (4.19) and it is simple. Indeed, by (4.19) suppose that 0 > u;. Now, we know that
Lo1¢' =00n[-L,L], ¢ is odd and ¢'(x) > 0 for [-L,0), and the eigenfunction associated with y; is odd, therefore
from the Sturm comparison theorem we get that ¢’ needs to have one zero on (=L, 0), which is impossible. Hence,
0= .
Next, suppose that 4; = 0 and let y; be an odd eigenfunction for ;. Let {¢’, P} be a basis of solutions for the problem
L8 =0 (we recall that P can be chosen to be even and satisfying P(0) = 1 and P'(0) = 0). Then, y; = a¢’ with
0 = x1(L) = a¢’(L). Hence, y; = 0 which is not possible. Therefore, 0 < y; and so 8; = 0 is simple with eigenfunction
f (being even or odd). We note that (3, is also simple.

Lastly, since f(—L) = f(L) > 0, it follows that f is even and by the Floquet theory f has exactly two different zeros
—a,a (a > 0)on (=L, L). Hence, f(0) < 0. Next, we consider the Wronskian function (constant) of f and ¢/,

W(x) = f(x)¢"(x) - f'(x)¢/(x)=C, forall x € [-L,L].
Then, C = f(0)¢''(0) > 0. Therefore, by the hypotheses (« = 0) we obtain
C = f(L)¢" (L) = h(0)9}/(0) = 0, (4.20)

which is a contradiction. Then, b = 0 and by item 1) above we get again ker(£) = {0}. This finishes the proof. O

4.3 | Morse and Nullity Indices for Operator L,
Theorem 1.4. We consider a positive single-lobe state (¢., ..). Then, from (1.8) we get (¢, ) € ker(L,). Next, we consider
M =03 +c—Log(¢?), N =—-03+c—Log(®})

then forany V = (f, g) € Dy, we obtain

o 1d f
M=l (f)] rectn
(4.21)
_1d d (g
ve-gaa ()] o

Thus, we obtain immediately
2

L d f +00 d g

Moreover, since (L,V,V) =0 if and only if f = d1¢. and g = d,3., we obtain from the continuity property at x = L that
dy = dy. Then, ker(L,) = span{(¢p., Y.)}. This finishes the proof. O

2
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5 | Existence of the Positive Single-Lobe State
In this section, our focus is on proving the following existence theorem:

Theorem 5.1. For any c € R, there is only one single-lobe positive state O, = (¢.,¥P.) € Dy that satisfies the NLS-log
equation (1.7), is monotonically decreasing on [0,L] and [L, +c0), and the map ¢ € R = 0, € Dy is C. Moreover, the mass

u(c) = Q(O,) satisfies % u(c) > 0.

For the proof of Theorem 5.1, we need some tools from dynamical systems theory for orbits on the plane and so for the
convenience of the reader, we will divide our analysis into several steps (sub-sections) in the following.

5.1 | The Period Function

We consider L = 7 (without loss of generality) and ¥(x) = ¢(x + ), x > 0. Then, the transformation

1c 1c
2 2

po(x)=e 2 ¥(x), pr(x)=e 2 ¢(x) (ERY)

implies that system (1.8)with Z = 0 is transformed into the following system of differential equations independent of the
velocity c:

—¢!/(x) + ¢1(x) — Log(¢?(x))$1(x) =0, x € (-7, 7),
—¢y (x) + $o(x) — Log(¢g(x)do(x) =0, x>0,
$1(7) = ¢1(=7) = $o(0),

¢y () = ¢ (=) = ¢;,(0).

(5.2)

We know that a positive decaying solution to the equation —gb(’)’ + ¢ — Log(qbg)gbo = 0 on the positive half-line is expressed
by

—(x+0t)2
Po(x)=ee 2 , x>0, aeR (5.3)

2
—a
with ¢o(0) = ee 2 .Ifa > 0, ¢, is monotonically decreasing on [0, +oc0) (a Gausson tail-profile); and if a < 0, ¢ is non-
monotone on [0, +o0) (a Gausson bump-profile). To prove Theorem 5.1, we will only consider Gausson-tail profiles for ¢,
therefore, we need to choose a > 0.

The second-order differential equations in system (5.2) are integrable with a first-order invariant given by

d
E$.0)=82-A@), §:= . A@) =28~ log¢)4” (54)

Note that the value of E(¢, £) = E is independent of x. Next, for A(u) = 2u? — Log(u?)u® we have that there is only one
1

positive root of A’(u) = 2u(1 — Log(u?)) denoted by r,, such that A’(r,) = 0. In fact, r, = e2. As shown in Figure 4, for
E = 0 there are two homoclinic orbits: one corresponds to positive u = ¢ and the other to negative u = —¢. Periodic orbits
exist inside each of the two homoclinic loops and correspond to E € (E,,,0), where E, = —A(r,.) = —e, and they correspond
to either strictly positive u or strictly negative u. Periodic orbits outside the two homoclinic loops exist for E € (0, +o0)
and they correspond to sign-indefinite u. Note that

E+ A(r,) >0, E € (E,,+»). (5.5)
The homoclinic orbit with the profile solution (5.3) and a > 0 corresponds to & = —1/A(¢) for all x > 0. Let us define

—a2

ro :=ee 2 ,thatis, the value of ¢o(x) at x = 0. Then, —1/A(r) is the value of ¢ at x = 0. Note that:
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FIGURE 4 | Redline:sy(ry) = %y/A(ro) = §¢(’)(0). Dashed-dotted vertical line depicts the value of ry = $,(0) = ee=9’/2 The
blue dashed curve represents the homoclinic orbit at E = 0, with the solid part depicting the shifted-tail NLS-log soliton.
The level curve E(¢,¢) = E(ry, Sg), at rg = ee=%’/2 and So = %\/A(po), is shown by the blue dashed line. The blue solid parts
depict a suitable positive single-lobe state profile solution for the NLS-log.

* 79 € (0,e) is a free parameter obtained from a € (0, +0).
* ro(a) — ewhena — 0.

* ro(a) — 0 when a — +oo.

Hence, the profile ¢; will be found from the following boundary-value problem:

—¢7(x) + ¢1(x) — Log(¢7(x))$1(x) =0,  x € (-7,7),

$1(m) = $1(=7) = ro, (5.6)
P (~m) = ~¢| () = YA

where r( € (0, e) will be considered as a free parameter of the problem. The positive single-lobe state ¢; will correspond
to a part of the level curve E(¢, £) = E which intersects r( only twice at the ends of the interval [—7, 7] (see Figure 4 for a
geometric construction of a positive single-lobe state for (5.6)).

Let us denote by sy = _~,42(ro) and we define the period function for a given (rg, sg):
r4 d¢
T (ro,s) := / pe—— (5.7)
ro \/ E + A(¢)
where the value E and the turning point r, are defined from (ry, s9) by
E =53 — A(rg) = —A(r3). (5.8)
For each level curve of E(¢, £) = E inside the homoclinic loop we have E € (E,, 0), and the turning point satisfies:
O<r.,<ry<e. (5.9)

We recall that ¢, is a positive single-lobe solution of the boundary-value problem (5.6) if and only if ry € (0, e) is a root of
the nonlinear equation

T(rg) =m, where T(rg) =T, (ro, AZ(VO) > (5.10)
17 of 27
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We note that, as T(r) is uniquely defined by r( € (0, e), the nonlinear equation (5.10) defines a unique mapping (0, e) >
ro = T(rg) € (0,+00). In the following subsection, we show the monotonicity of this function.

5.2 | Monotonicity of the Period Function

In this subsection, we will use the theory of dynamical systems for orbits on the plane and the period function in (5.7) to
prove that the mapping (0,¢e) 3 ry = T(ry) € (0,+c0) is C! and monotonically decreasing.

Recall that if W (¢, £) is a C! function in an open region of R?, then the differential of W is defined by

ow

oz 9

AW ($.£) = ‘;—qus "

and the line integral of dW (¢, £) along any C! contour y connecting (¢, £y) and (¢1, £;) does not depend on y and is
evaluated as

/ AW($,£) = Wy, £1) — W (o £0).
V4

At the level curve of E(¢, &) = £2 — A(¢) = E, we can write

2(A(¢) — A(r)
Al(¢)

d

2A(¢) —A(r*))é’] _ lz _2A$) - A(r)A"($) d (5.1D)

A'(4) (A" ()] ]W "

where the quotients are not singular for every ¢ > 0. In view of the fact that 2£dé = A’(¢)d¢ on the level curve E(¢, &) = E,
we can express (5.11) as:

_ _ " _
(A@) - A | s=—|a- 2(A(¢) A(r*g)A (¢) fdg+d [Z(A(¢) : ArDE| 512)
§ [4()] @)
The following lemma justifies the monotonicity of the mapping (0,e) 2 ry — T(rg) € (0, +0).
Lemma 5.2. The function ry + T(ry) is C' and monotonically decreasing for every ry € (0, e).
Proof. Since sy = —VAz(rO) in (5.10), for a given ry € (0, e), we have that the value of T(r) is obtained from the level curve
E(¢, &) = Ey(rg), where
_ 1 3
Ey(ro) = s5 — A(ro) = —<1 - Z>A("o) = —3Aro). (5.13)
For every ry € (0, e), we use the formula (5.12) to get
r4 _
(Batro)+ ATy = [ [¢ = HOZEE ag
° (5.14)
_ / " GG — A ))A" (¢) tdg + 2(A(ro) = A(rs))so
70 [A@I Alro) -

where we use (5.8) to obtain that £ = 0 at ¢ = r, and £ = sy at ¢ = ry. Because the integrands are free of singularities and
Eo(rg) + A(r,) > 0 due to (5.5), the mapping (0, e) 3 ry = T(ry) € (0,+00) is C'. We only need to prove that T’(r,) < 0 for
every ro € (0,e).
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FIGURE 5 | Graph of f in (5.17).

Differentiating (5.14) with respect to r yields

[Eo(ro) + A(r)IT" (ro) =([Eq(ro) + A(r)IT(ro)) = E(ro)T(ro)

_ /’+ [3_2<A(¢)—A(r*>)A"(¢)] L l 2AA(r) ~ A, ))A”(ro)]

"o [ @)’ aro" [4(ro)]
_ HAGQ) ~ ACDACo) | | AAGD) —A®) dg (5.15)
' lz A )P ]SH Al(ro) E(VO)/ o €
__ Al 34(rg) [T AAQ@) - Ar)A"(@) | do
450 (A £
where we have used
_ 2A(r)s, _34(rp) A(rg) 8¢ Eyro)
0= W 0= T 0= =

As A(¢p) = 2¢? — Log(¢?)¢?, we obtain that (5.15) is as follows:

A(r,)  3A'(rg) [ ¢*(3 — Log(¢*)) — e(1 + Log(¢°))
4s 8 Ju ¢$2(1 - Log(¢2))%§

[Eo(ro) + A(r )T (ro) = — dé. (5.16)

Let us define the following function:
f($) = ¢*(3 — Log(¢*)) — e(1 + Log(¢*). (5.17)

Differentiating (5.17) with respect to ¢ yields:

F1($) = 26(2 — Log(¢?)) - %
(5.18)

& ¢f'($) =2¢*(2-Log$*) —2¢ (¢ >0).

Note that f/(¢) = 0 ¢ = r, and f'(¢) < Oforany ¢ € (0,r,) U (r,, +0). Since f(¢) = 0 & ¢ = r, we have that f(¢) > 0
for any ¢ € (0,r,) and f(¢) < 0 for any ¢ € (r,, +0).

Next, we know that A’(ry) < 0 for any rq € (r,,e) and f(¢) < 0 for ¢ € [ry,r,] C (r.,e) then follows that T'(ry) < 0.
Similarly, since A’(r,) = 0, we have T'(r,.) < 0.

Now, we consider the case ry € (0,r,). Then,

"+ $%(3 — Log(¢?) — e(1 + Log(¢?)
o $2(1 - Log(¢2))%€

d¢' = Il + 12 (5.19)

19 of 27

85U8017 SUOWIWOD SAEaID 3|ceol dde 8Ly A peusenob a1e sejole VO ‘85N JO Sa|n. 10} ARl T8UIUO AB|IA LD (SUONIPUOD-PUR-SLLIBI WD A8 | Im" ARe.ql1 Ul JUO//:ScL) SUONIPUOD PUe SWB | 8u 89S *[6202/80/7T] U0 Akiqiauliuo AB|IM ‘|izeid - Ojned 0es JO AIseAluN AQ G800, Wides/TTTT 0T/I0p/uoo" A 1M Afelqjpuluo//:sdny wouy papeojumoq ‘T ‘5202 ‘06569 T



0.6

0.4

0.2
ot (3-In(z%)) - e (1 +In(s?))
2 (1-In(z2))*
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-0.6

FIGURE 6 | Inequality in (5.21).

where

" $2(3 — Log(¢?)) — e(1 + Log(¢*))
o $2(1 - Log(¢2))%¢

™+ $%(3 — Log(¢*)) — e(1 + Log(¢*))
r ¢2(1 — Log(¢2))*§

I = de,
(5.20)

L=

d¢

Because f(¢) > 0 for any ¢ € (0,r,), I; > 0. By using A’(¢) = 2¢(1 — Log(¢r2)), we get that (see Figure 6)

¢*(3 — Log(¢*)) — e(1 + Log(¢*)) S A'@)

$2(1 — Log(¢2))? 243 forany ¢ € (r,e) D (ry,ry). (5.21)

By (5.21) and proceeding by integration by parts, we have

1> / "+ Al(¢) ds
re  2¢34/Eo(ro) + A(¢)

_ VEo(ro) + A(ry) N 3/r+ VEo(ro) +A(¢)d¢
Vi P ¢4

(5.22)
\/Eo(ro) + A(r "+ §
r* T ¢4
Substituting this into (5.16) yields

Ar,)  3A'(rp) 3A/(ry)
- I - L
450 8 8

A(V*) 3A/(V0) \Y, EO(VO) + A(T* 3Al(VO)I

45, r g !

9A’(”0) /r+

20 of 27 Studies in Applied Mathematics, 2025

[Eo(ro) + A(r )T (ro) = —

(5.23)

85U8D| 7 SUOWILLOD BATERID 3[R0l jdde au Aq pauLeAob ke SSo1e O ‘88N J0 S3INJ 104 A%1q1T8UIIUO AB|IM UO (SUOIPUOD-PLE-SWWLBY/WI0D" A3 | 1M ARe1q 1[eu1Uo//SdY) SUORIPUOD PUe SR | 84} 89S *[G202/80/7T] U0 Ariqi1auljuo A8IIM ‘|1zeig - olned 0es JO Aisieniun Aq G800, Wwides/TTTT 0T/I0p/wo0"As|1m Al puljuo//sdny wouy papeojumod ‘T ‘G202 ‘0656.9vT



1
, and max, c(o,r,) A’ (rg) = 4e 2, so that we get

) . A
To evaluate the first two terms we will use that A(r,.) = e, 5o = ;ro)

_A(r*) " 3A’(l"0) \/Eo(ro) +A(V*) __ e n 3A’(}’0) \/Eo(ro) + e€
8 3 3

450 rl /A B o3
(5.24)
-_ e + 3\/E0(}’0)+€
24/ A(ro) 2e?
For (5.13) we get
e 3 Eo(l"o) +e 3\/E0(7'0) +e e 9(E0(Vo) + 8) 32
_ + 22 <0s 2 <2 - S o <4A(r)
2v/A 0
(ro) (ro) (5.25)
27A 6 6 27A
S — (ro) +9e < ¢ S %e < ¢ + (VO).
4 A(ro) A(ro) 4

Since A’(rg) > 0foranyr, € (0,r,), A(ry) increases monotonically for any r, € (0,r,), and ﬁ decreases monotonically
0

6
for any ry € (0, r,). Differentiating —— + 27A(ro)

A0 ” with respect to r( yields

<e6 27A(r0)>’_ A (ro)  27A'(rg)  eSA'(ry)  27A'(ro)

Alrg) T 4 ) T A2 T 4 T AT 4
0 (A(ro)) (A(rs)) (5.26)
27A'
=—e*A'(ry) + A (o) _ (2 - e4>A’(r0) <0.
4 4
6
Therefore, the function ﬁ + %(ro) is monotonically decreasing for any ry € (0, r,.). Using this we get that
0
6 6
e 27A(rg) e 27A(r,) 4 27
+ > + = +—]e>9 5.27
Ao T a Tagn e \eFT)er G20
Thus, for (5.25) we get
A(r 3A'(rp) VEo(ro) + A(r
_A) + (ro) VEo(ro) + A(r) < 0 foranyry € (0,r,).
450 8 r
As a result of the above calculations, for every rq € (0,r,.) we have T'(r() < 0. This completes the proof. |

5.3 | Proofof Theorem 5.1

Proof. Due to the monotonicity of the period function T(ry) in r( given by Lemma 5.2 we have a diffeomorphism (0, ¢) 2
ro = T(rg) € (0,+0). In fact, we will show that T(ry) — 0 when ry — e and T'(ry) — +o0, when ry — 0. Indeed,
from (5.8), (5.13), and (5.9), we have that for ry € (0, e), the equation Ey(rg) = —A(r, ) determines r, = r,(rg) from the
nonlinear equation:

3
2r_2|r - Log(r_zk)r_z|r = Z[Zr(z) - Log(r(z))rg], (5.28)
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and lim; %[Zr(z) - Log(r(z))rg] = 0. Now for (5.28) we have

2}’%r - Log(ri)ri — 0, whenry - e r, — e whenryg—e

(5.29)
& |ry —rgl = 0, whenry — e.
Since the weakly singular integrand below is integrable, we have
r4 d r4 d
T(rg) = / —¢ = / —¢ — 0, whenry — e, (5.30)
ro VE+AWP) Jro VAP —A(ry)
Next, for every 0 < ry < r, < e we obtain
T(ro) = / /
\/A(¢) A(r+ \/A(¢
(5.31)

ro  V2¢%—Log(¢?)¢? Jry ¢v/2—Log(¢?)

Since r, € (r,,e) and

3052 24,27 _
r{)lm 4[2r0 - Log(ro)ro] =0,

by (5.28) we have r, — e, when ry — 0. Therefore, as

e d(;b '
— = lim /2 - Log(¢?) = +
/o SV Togg) 0 e

we have T(ry) — +oo as ry — 0. Then, as the function T(r) is monotone decreasing, the codomain of the function ry
T(rg) is indeed (0, +0).

Thus, there is a unique ry € (0, e) such that T(rg) = 7. Therefore, the boundary-value problem (5.6) has a solution. Next,
—a
define ay > 0 such thatee 2 = ry. Then,

= et —G-mrag)
Pe(x)=e 2 ¢$1(x) and P.(x)=e 2 e 2

satisfies (1.8) with Z = 0. Obviously, we have that R 3 ¢ = 0(c) = (¢, .) € Dy is a C'-mapping of positive single-lobe

state for the NLS-log equation on the tadpole graph.
Next, the relation

T +00
u(©) = 10| = e~ l / $(0)dx + / ¢§<x>dx]
- 0

—(x+a0)2
with ¢g(x) =ee 2 and ¢; independent of ¢, implies u'(c) >0 for all ¢ € R. The proof of the theorem is
completed. 0

6 | Proof of the Stability Theorem

In this section, we show Theorem 1.5 based on the stability criterion in Theorem A.7 (the Appendix).
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Proof. By Theorem 5.1, we obtain the existence of a C!-mapping ¢ € R — 0. = (¢, %.) of positive single-lobe states for
the NLS-log model on a tadpole graph. Moreover, the mapping ¢ — ||©,||? is strictly increasing. Next, from Theorem 1.3 we
get that the Morse index for £4 in (1.17), n(£,), satisfies n(£,) = 1 and ker(£;) = {0}. Moreover, Theorem 1.4 establishes
that Ker(£,) = span{(¢., ¥.)} and £, = 0. Thus, by Theorem 2.2 and stability criterion in Theorem A.7, we obtain that
e (¢., . is orbitally stable in W. This finishes the proof. O

7 | Discussion and Open Problems

In this paper, we have established the existence and orbital stability of standing wave solutions for the NLS-log model on
a tadpole graph with a profile being a positive single-lobe state. To that end, we use tools from dynamical systems theory
for orbits on the plane and we use the period function for showing the existence of such a state with Neumann-Kirchhoff
condition at the vertex v = L (Z = 0 in (1.8)). We believe that the existence (and simultaneous stability properties) of
positive single-lobe solutions on the tadpole graph can be obtained via variational analysis applied to the constrained
problem

I, =inf{E(U) : U e W(Q), QU)=1> 0},

For this analysis, we would to use the approach in Cazenave [23] combined with symmetric rearrangement strategies on
metric graphs (see Adami et al. [1] or Ardila [16]). Furthermore, we note that via this approach for the existence, the phase
velocity c in the vectorial NLS-log equation (1.7) is determined by the Lagrange multiplier associated with the minimization
problem I;. Additionally, stability information (after proving the globally well-posed theory in W(G)) is only established
for the following minimizing set:

G, ={UeW() : EU)=1,, QU)=21> 0}

Thus, the advantage of our approach using the period function is that we can demonstrate the existence of positive single-
lobe states for any ¢ € R.

The orbital stability of the positive single-lobe states established in Theorem 5.1 is based on the framework of Grillakis
et al. in [30] adapted to the tadpole graph and so via a splitting eigenvalue method and tools of the extension theory of
Krein-von Neumann for symmetric operators and the Sturm comparison theorem we identify the Morse index and the
nullity index of a specific linearized operator around a positive single-lobe state which is a fundamental ingredient in
this endeavor. For the case Z # 0 in (1.8) and by supposing the existence of a positive single-lobe state, is possible to obtain
similar results for (£,, D) as in Theorem 1.4. Statements (1) — (3) in Theorem (1.3) are also true for (£, D) (see Section 3
in [8]). Moreover, if we define the quantity for the shift a = a(Z)

’/L 1-— 2
C()+Z_ a

M=y TP

+Z,

then, the kernel associated with (£, D) is trivial in the following cases: for o # 0 or « = 0 in the case of admissible
parameters Z satisfying Z < 0 (see Theorem 1.3 and Lemma 3.5 in [8]). The existence of these positive single-lobe state
profiles with Z # 0 is more challenging and will be addressed in future work. Our approach has a prospect of being
extended to study stability properties of other standing wave states for the NLS-log on a tadpole graph (by instance, to
choose boundary conditions in the family of 6-parameters given in (1.5)) or on another non-compact metric graph such as

FIGURE 7 | A looping edge graph with N = 5 half-lines.
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alooping edge graph (see Figure 7), namely, a graph consisting of a circle with several half-lines attached at a single vertex
(see [8, 9, 14)).
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Appendix A
A.1 | Classical Extension Theory Results

The following results are classical in the extension theory of symmetric operators and can be found in [39, 42]. Let A be a closed densely
defined symmetric operator in the Hilbert space H. The domain of A is denoted by D(A). The deficiency indices of A are denoted by
n,(A) := dimker(A* ¥ iI), with A* denoting the adjoint operator of A. The number of negative eigenvalues counting multiplicities (or
Morse index) of A is denoted by n(A).

TheoremA.1 (von-Neumann decomposition). Let A be a closed, symmetric operator, then

D(A")=DA)® N_; ® N, (AD
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https://www.mdpi.com/journal/symmetry/special_issues/Symmetries_Nonlinear_PDEs_Metric_Graphs_Branched_Networks

with N; = ker(A* ¥ iI). Therefore, foru € D(A*)andu=x+y+z € D(A) D N_; & N,
A*u = Ax + (-i)y +iz. (A.2)
Remark A.2. The direct sum in (A.1) is not necessarily orthogonal.

Proposition A.3. Let A be a densely defined, closed, symmetric operator in some Hilbert space H with deficiency indices equal ton (A) = 1.
All self-adjoint extensions Ag of A may be parametrized by a real parameter 6 € [0, 27) such that

D(Ag) ={x+co, + tel¢_ : x € D(A),¢ € C},
Ag(x + (. + (e ) = Ax +i{¢, —ile_,
with A%, = ig,, and l|p. Il = Ip_I|
The following proposition provides a strategy for estimating the Morse-index of the self-adjoint extensions (see [39, 42]-Chapter X).

Proposition A.4. Let A be a densely defined lower semi-bounded symmetric operator (i.e., A > mlI) with finite deficiency indices, n..(A) =
k < oo, in the Hilbert space H, and let Abea self-adjoint extension of A. Then, the spectrum of A in (—o0, m) is discrete and consists of, at
most, k eigenvalues counting multiplicities.

The next proposition can be found in Naimark [39] (see Theorem 9).

Proposition A.5. All self-adjoint extensions of a closed, symmetric operator which has equal and finite deficiency indices have one and the
same continuous spectrum.

A.2 | Perron-Frobenius Property for §-Interaction Schrodinger Operators on the Line

In this section, we establish the Perron-Frobenius property for the unfolded self-adjoint operator £ in (4.11),
£'=-62+(c—2) - Log(@en) = —0% + (x| + @)’ - 3 (A3)
on d-interaction domains, namely,

Ds, ={f € R~ {0) nH'(R) : x*f € L*(R), f'(0+) — f'(0-) = yf(0)} (A4

c+l _(x+a)2
for any y € R. Here, ¥eyep is the even extension to the whole line of the Gausson tail-soliton profile ,(x) =e 2 e 2 ,withx >0,
a > 0. Since

lim (x| + a)2 =400,
|x|—=>+00

operator £ has a discrete spectrum, o(£) = 04(L) = {4 }xen (this statement can be obtained similarly using the strategy in the proof
of Theorem 3.1 in [19]). In particular, from Sections 2 and 3 in Chapter 2 in [19] adapted to (£, Ds,,) for y fixed (see also Lemma 4.8
in [12]) we have the following distribution of the eigenvalues 1o < 4; < -+ <A < - - -, with 4} > +o0 as k - +o0 and from the semi-

boundedness of V, = (|x| + a)2 — 3 we obtain that any solution of the equation £v = A,v, v € Ds,, is unique up to a constant factor.
Therefore, each eigenvalue 4, is simple.

TheoremA.6 (Perron-Frobenius property). Consider the family of self-adjoint operators (L, Dsy)yer- Fory fixed, let Ay = inf O'p(E) be
the smallest eigenvalue. Then, the corresponding eigenfunction { of A is positive (after replacing ¢, by —¢ if necessary) and even.

Proof. This result can be obtained by following the strategy in the proof of Theorem 3.5 in [19]. Here, we give another approach via a
slight twist of standard abstract Perron-Frobenius arguments (see Proposition 2 in Albert et al. [5]). The basic point in the analysis is to

2
show that the Laplacian operator —A, = —;7 on the domain D5, has its resolvent R, = (-4, + wu)~! represented by a positive kernel

for some u > 0 sufficiently large. Namely, for f € L*(R)

+0o0
R f(x) = / K )f0)dy
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with K(x,y) > 0 for all x,y € R. By the convenience of the reader, we show this main point; the remainder of the proof follows the
same strategy as in [5]. Thus, for y fixed, let 4 > 0 be sufficiently large (with —2\/,1_1 <y in the case y < 0), then from the Krein formula
(see Theorem 3.1.2 in [6]) we obtain

Kt y) = —— |e VAR _ ¥ o~VRxl+iyD |

241 Y4241

Moreover, for every x fixed, K(x,-) € L>(R). Thus, the existence of the integral above is guaranteed by Holder’s inequality. Moreover,
x?R, f € L*(R). Now, since K(x,y) = K(y, x), it is sufficient to show that K(x,y) > 0 in the following cases.

1. Letx>0andy > 0orx < 0andy < 0: for y = 0, we obtain from 7+;ﬁ <1land|x —y| £ |x| + |y|, that K(x,y) > 0. Fory < 0 and
—24/u < v, it follows immediately K(x,y) > 0.
2. Letx > 0and y < 0: in this case,
K(x,y) = ;e_\/ﬁ(x_y) >0
+24/u
for any value of y (where again —2\/ﬁ < yinthecasey < 0).
This finishes the proof. O

A.3 | Orbital Stability Criterion

For the convenience of the reader, in this subsection we adapt the abstract stability results from Grillakis et al. in [30] for the case of
the NLS-log on a tadpole graph. This criterion was used in the proof of Theorem 1.5 for the case of standing waves that are positive
single-lobe states.

Theorem A.7. Suppose that there is C'-mapping ¢ — (¢.,®.) of standing-wave solutions for the NLS-log model (1.2) on a tadpole graph.
We consider the operators L1 and L, in (1.17). For L1 suppose that the Morse index is one and its kernel is trivial. For L, suppose that it is a
non-negative operator with kernel generated by the profile (¢., 1.). Moreover, suppose that the Cauchy problem associated with the NLS-log

model (1.2) is globally well-posed in the space W in (1.12). Then, e'*(¢,,,) is orbitally stable in W if% [1(pes )| > 0.
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