Fonte: Remote Sensing. Unidade: ESALQ
Assuntos: AGRICULTURA DE PRECISÃO, APRENDIZADO COMPUTACIONAL, DEFICIT HÍDRICO, ESPECTROSCOPIA, SENSORIAMENTO REMOTO, SOJA
ABNT
OLIVEIRA, Caio Almeida de et al. High-throughput identification and prediction of early stress markers in soybean under progressive water regimes via hyperspectral spectroscopy and machine learning. Remote Sensing, v. 17, p. 1-31, 2025Tradução . . Disponível em: https://doi.org/10.3390/rs17203409. Acesso em: 27 nov. 2025.APA
Oliveira, C. A. de, Vedana, N. G., Mendonça, W. A., Gonçalves, J. V. F., Matos, D. H. S. de, Furlanetto, R. H., et al. (2025). High-throughput identification and prediction of early stress markers in soybean under progressive water regimes via hyperspectral spectroscopy and machine learning. Remote Sensing, 17, 1-31. doi:10.3390/rs17203409NLM
Oliveira CA de, Vedana NG, Mendonça WA, Gonçalves JVF, Matos DHS de, Furlanetto RH, Crusiol LGT, Reis AS, Antunes WC, Oliveira RB de, Chicati ML, Demattê JAM, Nanni MR, Falcioni R. High-throughput identification and prediction of early stress markers in soybean under progressive water regimes via hyperspectral spectroscopy and machine learning [Internet]. Remote Sensing. 2025 ; 17 1-31.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3390/rs17203409Vancouver
Oliveira CA de, Vedana NG, Mendonça WA, Gonçalves JVF, Matos DHS de, Furlanetto RH, Crusiol LGT, Reis AS, Antunes WC, Oliveira RB de, Chicati ML, Demattê JAM, Nanni MR, Falcioni R. High-throughput identification and prediction of early stress markers in soybean under progressive water regimes via hyperspectral spectroscopy and machine learning [Internet]. Remote Sensing. 2025 ; 17 1-31.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3390/rs17203409
