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Abstract: The need to maintain soil health and produce more food worldwide has increased, and soil
analysis is essential for its management. Although spectroscopy has emerged as an important tool,
it is important to focus primarily on predictive modeling procedures rather than specific protocols.
This article aims to contribute to a routine work sequence in a hybrid laboratory that seeks to provide
the best data for its users. In this study, 18,730 soil samples from the state of Paraná, Brazil, were
analyzed using three different laboratories, sensors and geometries for data acquisition. Thirty soil
properties were analyzed, some using different chemical methodologies for comparison purposes.
After a spectral reading, two literary protocols were applied, and the final prediction results were
observed. We applied cubist models, which were the best for our population. The combination of
different spectral analysis systems, with a standardized protocol using LB for the ISS detection of
discrepant samples, was shown to significantly improve the accuracy of predictions for 21 of the
30 soil properties analyzed, highlighting the importance of choosing the extraction methodology
and improving data quality, which have a significant impact on laboratory analyses, reaffirming
spectroscopy as an essential tool for the efficient and sustainable management of soil resources.

Keywords: laboratory spectroscopy; pedometrics; soil quality; spectral standardization soil analysis

1. Introduction

Key soil performance indicators traditionally obtained from soil laboratory analysis
are important tools to identify areas that need attention to improve soil management and
health while increasing productivity. However, the increases in demand for soil properties
and nutrient content information require time and expense. Thus, we should constrain the
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number of samples to be analyzed. In this context, efforts have been made to make cheaper
and faster auxiliary techniques for soil analysis [1,2].

The advent of visible and near-infrared spectroscopy (vis-NIR-SWIR, 400–2500 nm)
has revolutionized soil analysis, offering rapid, economic, and environmentally friendly
methods [3]. As a result, it is increasingly being used as an auxiliary to traditional soil
analysis techniques in proxy models [4,5]. The main advantages of this approach include
speed analysis, multiple sample scans, and a user-friendly operation. This permits the use
of large sample sets at a lower cost compared to conventional methods [6,7]. Additionally,
this technique is non-invasive, non-destructive, and “green”, allowing the measurement of
many samples for their several soil properties [8,9] in both field and laboratory conditions.

The global soil laboratory network GLOSOLAN [10] recently recognized the poten-
tial of vis-NIR-SWIR for soil analysis and added this technique to the vast list of soil
analysis methods under initiative framework terms as GLSOLOAN-Spec. However, it
also highlighted constraints such as the lack of common protocols, spectral libraries and
skilled laborers. The diversity of equipment and lack of standards make data sharing
difficult [11,12], mainly in proxy models where the absorption positions, intensity and
shape of the spectrum are crucial [13]. Recently, to fill this gap, a new activity for soil
standards and protocols was initiated in the framework of the IEEE Standard Association
under the P4005 working group [14]

Generally, variance in reflectance results may be summarized into two main categories:
systematic and non-systematic effects. Systematic effects are controlled factors, but they can
vary from one laboratory to another depending on the inhouse protocol and instruments. To
minimize these effects, the white reference sample (WR), measurement geometry, operator
skills, sample preparation, and other factors must be kept constant and standardized.
Non-systematic effects include noise and instabilities.

To address the challenge of aligning spectral measurements between laboratories,
chemometric and data-driven approaches have been explored to reduce the reliance on
traditional analytical methods. Pimstein et al. [15] proposed using an internal soil standard
(ISS) to harmonize spectral data across different labs. Similarly, Jung et al. [16] suggested
employing a common white reference to minimize spectrometer variations; however, this
approach is impractical due to the inability to share a single reference among users and
the potential for white reference deterioration over time. Ben Dor et al. [13] introduced a
soil benchmark method using standard sand samples, characterized by their mineralogy
and reflectance stability, to align spectra from various sources using two sand dunes from
Southern Australia as soil standards (ISS), namely Lucky Bay (LB) and Wylie Bay (WB).
Despite this, systematic factors must remain controlled for accurate standardization. In
a more recent study, Jung et al. [16] applied unsupervised random forests to compute
proximity matrices and clusters for spectrally similar soil samples, enabling internal quality
control and effective outlier detection.

To advance soil spectroscopy techniques in laboratories, this study aims to (i) test
spectral standardization using an internal benchmark, i.e., LB to generate correction factors
and normalize variations; (ii) apply machine learning to the standardized spectra for
segmentation, outlier detection, and removal; and (iii) use raw, standardized, and optimized
spectra configurations in proxy models for predicting soil properties.

2. Materials and Methods
2.1. Soil Samples

In this study, we used 18,730 samples collected in the state of Paraná, Brazil (Figure 1).
The samples came from the ABC Foundation [17] and Geotechnologies in the Soil Science
Group [18]. The state of Paraná is an important Brazilian state regarding agricultural areas,
parent material, including sandstone, and diabase. The main soils are Nitisols, Ferralsols,
Arenosols and Litosols [19]. The climate is predominantly humid subtropical. According to
the Köppen classification, the region is divided into a humid subtropical climate (Cfa) in
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the north, center, west and southwest of the state, as well as the Ribeira River valley, and a
humid temperate climate (Cfb) in the higher plateau lands [20].
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Figure 1. Schematic of the sequence from acquisition, sample preparation, readings, calibration,
correction, and data segmentation for modeling.

2.2. Chemical and Physical Analysis

The soil samples were air-dried, grounded and sieved in a 2 mm mesh for physical
and chemical determination (Appendix A) using traditional methods according to Teixeia
et al. [21]. The chemical analyses involved the potential of hydrogen (pH) in SMP buffer
solution and CaCl2, organic matter (OM) (using the Walkey–Black method by colorimetry),
and the following elements in Anion Exchange Resin (AER) and Mehlich-1 extractant (M):
potential acidity (H + Al) and available aluminum (Al), phosphorus (P), potassium (K),
calcium (Ca) and magnesium (Mg). Available micronutrients boron (B), copper (Cu), iron
(Fe), manganese (Mn) and zinc (Zn) were determined in the DTPA extractant. Sand, silt
and clay content were determined by the densimeter method, based on the sedimentation
of soil constituents.

We also calculated the sum of the base (SB), Equation (2), cation exchange capacity
(CEC), Equation (1), and base saturation (V%), Equation (3).

SB = Ca + Mg + K (1)

CEC = SB + H + Al (2)

V% = (SB/CEC) × 100 (3)



Remote Sens. 2024, 16, 4543 4 of 17

2.3. Soil Spectroscopic Analysis

Each sample was placed in Petri dishes to reduce the influence of material roughness.
Spectral data were acquired using spectroradiometers Fieldspec 3, 4 and Pro (Analytical
Spectral Devices, ASD, Boulder, CO, USA). The three models cover the same spectral range
from 350 to 2500 nm, but their resolutions differ: Fieldspec 3 has 3 nm resolution in the
VIS/NIR (350–1000 nm) and 10 nm in the SWIR (1000–2500 nm); Fieldspec 4 offers higher
resolution at 2 nm in the VIS/NIR and 8 nm in the SWIR; and Fieldspec Pro provides
1–3 nm in the VIS/NIR and 10 nm in the SWIR. All spectral analyses follow the standard
spectral library analysis protocol [22], associated with the protocol by Ben Dor et al. [13]
using a correction for the mother ISSs in CSIRO (LB and WB).

A total of 14,261 scans were performed with Fieldspec 3, 6918 with Fieldspec Pro, and
4469 with Fieldspec 4. The samples scanned with Fieldspec Pro were also shared with
Fieldspec 3, resulting in a total of 18,730 samples scanned. We performed three replicates
by rotating the sample to different positions, scanning it 100 times for each rotation and
calculating the average spectrum. These three mean spectra were then averaged to obtain
the final spectrum for the sample. The setup followed the long light geometry from Brazilian
protocols [23], with a sensor positioned 8 cm away from the sample surface, capturing
reflected light from a 2 cm2 area. We corrected the splice points at 1000 and 1800 nm using
the linear interpolation of 10 bands with the prospectr package [24] in R [25].

Modifications were employed to the experiments to emulate systematic effects, which
included different environments and light (FieldSpec 3 and Pro were used in a dark room)
and using fourteen different operators (experienced users and untrained students). And
a standard white plate (Spectralon® (Labsphere, North Sutton, NH, USA)) was analyzed
every 20 min to calibrate the device readings.

2.3.1. Standardized Dataset

To correct and standardize spectral data, protocols were used to employ the sand
samples (LB and WB) proposed by Ben Dor et al. [13]. Given that the sensor calibration
time lasts 20 min, spectral data collection was structured in batches of analyses. And in
each lot, an analysis of two standard sands was performed, sands originating along the
coast of Wylie Bay (WB) (90% quartz, 10% aragonite, and calcium carbonate) and Lucky
Bay (LB) (99% quartz) in southwest Australia. Samples of WB and LB sands found in
Western Australia are quite homogeneous and almost monomineral (quartz), consisting
of a particle size and shape found in natural soils, being bright (LB) and semi-bright (WB)
(covering a range large and dynamic spectrum) and having stable spectral characteristics.
Moreover, these samples were chosen as spectral standards due to their spectral consistency,
stability in space and time, mineralogical homogeneity, and representativeness in relation
to the materials analyzed. These characteristics minimize error introduction and ensure
that observed variations can be attributed to instrumental or operational factors, thereby
facilitating data calibration and harmonization. The selection of these samples, which have
a proven history as reliable standards in previous studies, strengthens the experimental
design and allows for an independent replication and verification of the results obtained.
Spectral correction Equation (4) is described below:

Rcλ = Roλ × (1 − (((Sρλ − SBMρλ))/Sρλ)) (4)

where
Sρλ represents the WB and LB measured reflectance; SBMρλ is the reflectance of the

soil benchmark (SBM) ISS reference (the WB and LB sand samples); Roλ is the original soil
sample reflectance; and Rcλ is the corrected soil sample reflectance.
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2.3.2. Optimized Dataset

As a step forward in spectrum correction, we additionally test a data-driven correction
approach. To achieve this, the Unsupervised Routine Soil Spectral Analysis (URSSA)
proposed by Poppiel et al. [26] was used, with the aim of removing outliers.

To reduce computational time, spectral data were resampled from 1 nm to 10 nm
resolution using the prospectr package in R. Resampling is an important step to simplify
the data volume while retaining the most relevant information. Next, the random uniform
forest (RUF) technique was applied to the resampled data to identify spectral patterns and
assess proximity between samples. In RUF, proximity is measured based on the frequency
with which soil samples appear in the same terminal nodes (leaves) of decision trees. This
proximity measure identifies samples that share similar characteristics in the spectral data.

After calculating the proximity matrix between samples, dimensionality reduction was
performed through multidimensional scaling (MDS), which reduced the proximity matrix
to two principal coordinates. This step aids in visualizing and separating samples within
a two-dimensional space, facilitating the distinction of different patterns and potential
outliers. With the principal coordinates obtained from MDS, Euclidean distances were
calculated to identify each sample’s nearest neighbors.

Spectral clustering was then conducted using the K-means algorithm, with a maximum
of 10 clusters. Each cluster represents a group of spectrally similar samples. Outliers were
identified by comparing the cluster results with traditional laboratory values. This allowed
for the removal of samples that deviated significantly from expected laboratory values
for the soil properties analyzed. The URSSA script, which integrates all these steps, was
applied to 30 soil properties, ensuring a comprehensive and accurate correction. More
details about this approach can be found in [26].

The technique of spectral resolution reduction decreases data volume while retaining
the most relevant information. This simplification process facilitates analysis by eliminating
spectral redundancies that may not significantly contribute to distinguishing soil charac-
teristics. When combined with the random uniform forest (RUF) method, this approach
enables the identification of relevant spectral patterns and the assessment of proximity
between samples. RUF helps detect consistent spectral variations and selects the most
informative spectral bands, which is particularly useful when dealing with data collected
from different spectrometers and operators. By reducing the data to a subset of essential
spectral characteristics, the impact of variations introduced by different operators and
equipment is minimized.

Furthermore, by incorporating these resampled data into deep learning models, along
with the use of the Internal Soil Standards (ISS) for standardization, it becomes possible to
develop more robust models that are less sensitive to systematic errors. Resampling and
feature selection make the models less dependent on noisy or redundant data, which are
often introduced by differences in instruments and operators. Ultimately, this results in
a more standardized and accurate spectral analysis, reducing systematic variability that
would otherwise hinder data comparability across different measurement sets.

2.4. Predictive Modeling

Spectra in the Vis-NIR-SWIR range were used as input data for the models. For each
soil property, the dataset was divided into training and validation through simple random
sampling, where 70% of the samples were used for calibration and 30% for model validation.
A simple 70–30% split for training and validation was chosen due to the use of the RUF
algorithm for outlier removal, as this algorithm enhances model stability by reducing data
variability and eliminating samples that could distort model fitting. This process allows the
remaining data to be more representative of the overall dataset and, consequently, reduces
the risk of overfitting.

The Cubist algorithm, provided by the Cubist package [27], frequently shows better re-
sults than other algorithms for soil spectroscopy [28,29] and is used in the R software [25]. It
is a rule-based algorithm, derived from Quinlan’s M5 model tree [30]. The Cubist algorithm
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is particularly effective in soil spectroscopy as it combines the structure of decision trees
with the robustness of multiple linear regression. Unlike other decision tree-based models
that use the average of values at each terminal node, Cubist performs specific linear regres-
sions at each node. This allows for a more precise modeling of complex relationships in
spectral data, especially in cases with nonlinear interactions between spectral variables and
soil properties. Additionally, Cubist incorporates the boosting technique, which adjusts the
model through sequential iterations, reducing residual error and increasing accuracy [31].

3. Results
3.1. Analysis Description of Laboratory Data

The soil samples were analyzed using two extraction methods, Anion Exchange Resin
(AER) and Mehlich-1 (M), to assess various physicochemical properties crucial for under-
standing soil fertility and composition. Figure 2 presents a comprehensive comparison
of these methods through violin and box plots, revealing distinct patterns in nutrient
availability and soil characteristics.

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 18 
 

 

sampling, where 70% of the samples were used for calibration and 30% for model valida-
tion. A simple 70–30% split for training and validation was chosen due to the use of the 
RUF algorithm for outlier removal, as this algorithm enhances model stability by reducing 
data variability and eliminating samples that could distort model fitting. This process al-
lows the remaining data to be more representative of the overall dataset and, conse-
quently, reduces the risk of overfitting. 

The Cubist algorithm, provided by the Cubist package [27], frequently shows better 
results than other algorithms for soil spectroscopy [28,29] and is used in the R software 
[25]. It is a rule-based algorithm, derived from Quinlan’s M5 model tree [30]. The Cubist 
algorithm is particularly effective in soil spectroscopy as it combines the structure of de-
cision trees with the robustness of multiple linear regression. Unlike other decision tree-
based models that use the average of values at each terminal node, Cubist performs spe-
cific linear regressions at each node. This allows for a more precise modeling of complex 
relationships in spectral data, especially in cases with nonlinear interactions between spec-
tral variables and soil properties. Additionally, Cubist incorporates the boosting tech-
nique, which adjusts the model through sequential iterations, reducing residual error and 
increasing accuracy [31]. 

3. Results 
3.1. Analysis Description of Laboratory Data 

The soil samples were analyzed using two extraction methods, Anion Exchange 
Resin (AER) and Mehlich-1 (M), to assess various physicochemical properties crucial for 
understanding soil fertility and composition. Figure 2 presents a comprehensive compar-
ison of these methods through violin and box plots, revealing distinct patterns in nutrient 
availability and soil characteristics. 

 
Figure 2. Violin plots show the full distribution of the data, while the box plots within them indicate
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Organic matter content exhibited substantial variability or standard deviation (SD)
(SD = 20.64 g.dm−3), indicating diverse soil organic compositions across samples. Soil pH, mea-
sured in CaCl2 and SMP, showed relatively low variability (SD = 0.47 and 0.32, respectively),
with values generally ranging between 5 and 6, suggesting slightly acidic conditions. Notably,
the AER method yielded higher variability in several properties compared to the M method,
particularly for H + Al (SD_AER = 29.76 cmolc.dm−3 vs. SD_M = 1.66 cmolc.dm−3) and ex-
changeable cations such as Ca (SD_AER = 22.46 cmolc.dm−3 vs. SD_M = 1.59 cmolc.dm−3)
and Mg (SD_AER = 11.39 cmolc.dm−3 vs. SD_M = 0.82 cmolc.dm−3). Phosphorus availability
differed markedly between methods, with AER extracting higher and more variable concentra-



Remote Sens. 2024, 16, 4543 7 of 17

tions (SD_AER = 36.66 mg.dm−3 vs. SD_M = 13.11 mg.dm−3). The cation exchange capac-
ity (CEC) showed high variability (SD_AER = 42.93 cmolc.dm−3, SD_M = 44 cmolc.dm−3),
reflecting diverse soil textures, further evidenced by the considerable variation in clay
(SD = 170.8 g.kg−1), silt (SD = 103.34 g kg−1), and sand (SD = 224.64 g.kg−1) contents.

3.2. Correlation Between Soil Properties and Spectra of the Vis-Nir-Swir Region

To show the strength and direction of linear relationships between several soil proper-
ties and their medium spectrum, a Pearson correlation plot was used (Figure 3). In this plot,
each soil property is represented along the Y axis, with colored cells indicating correlation
values between the property and the spectrum in the X axis.
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The soil spectra had a significant correlation (p < 0.01) with clay (−0.78 < r < −0.21),
sand (0.08 < r < 0.64), silt (−0.20 < r < 0.18), OM (−0.45 < r < −0.24), CEC (AER)
(−0.30 < r < −0.01), CEC (M) (0.09 < r < 0.41) and V% (M) (−0.28 < r < −0.14). Higher
levels of clay and organic matter in the soil are associated with the reduced reflection ab-
sorption of electromagnetic radiation, resulting in negative correlations. For micronutrients,
B (−0.41 < r < −0.08) and Cu (−0.54 < r < −0.17) showed a negative correlation, likely due
to their adsorption onto negatively charged clay surfaces and organic functional groups.
In contrast, properties like H + Al, P, K, Ca, Mg, S, Mn and Zn showed no absorption
in the VIS-NIR spectrum and low correlations with the spectrally detectable properties.
However, due to their indirect correlations with properties absorbed in VIS-NIR (such as
organic matter), it is possible to develop second-order regression models to estimate their
values [32,33].
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3.3. Standardized Database Predictive Models—ISS Approach

Figure 4 shows the mean and standard deviation of the VIS-NIR-SWIR spectra for the
entire database, grouped into 10 clusters based on spectral similarity. While each cluster
exhibits a unique spectral signature, similarities can be observed, particularly in the VIS and
NIR regions. The spectra display typical soil absorptions, as noted in previous studies, at
400–600 nm, 1100 nm, 1400 nm, 1800–2000 nm, and 2200–2400 nm [30]. Absorptions in the
visible range (400–780 nm) are linked to iron-containing minerals like hematite and goethite,
though chromophores and organic matter can also cause absorption in this range [34].
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raw spectra.

The correction did not affect spectral features tied to soil properties as the overall
spectral shape remained consistent across all bands [35]. For soil properties with large
sample sizes (over 9000 samples), such as OM, Al (AER), CEC (AER), SB (AER), and Ca
(AER), standardized data outperformed raw data in RMSE and RPIQ metrics. These results
underscore the importance of spectral standardization in integrating spectral libraries and
improving model robustness [13].

3.4. Comparison of Results of Predictive Models Between Databases

All the results can be visualized in Table 1. Regarding chemical properties, for OM,
the standardized treatment obtained the best model fit, with the mean value of R2 reaching
0.87. However, the optimized treatment improved data dispersion with a mean RPIQ
value of 1.68 and decreased the prediction error margin of 7.79 g.dm−3 in standardized
treatment to 5.36 g.dm−3 in the optimized treatment. The improvement in RMSE and
RPIQ metrics in the optimized treatment for predictive modeling can be attributed to a
variance reduction [11], achieved by removing outliers. The same effect was observed
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in the optimized treatment for the pH (CaCl2), H + Al (AER) and Al (AER), with RMSE
means equal to 0.33, 17.54 mmolc.dm−3 and 4.37 mmolc.dm−3, and RPIQ values of 0.9, 0.74
and 0.28 were obtained, respectively. Likewise, for the properties CEC (AER), SB (AER)
and H + Al (M), there was an improvement in performance in all metrics in the optimized
treatment, showing a mean R2 value equal to 0.74, 0.52 and 0.38, and RPIQ values of 1.28,
0.85 and 0.74 were obtained, respectively. For the optimized treatment, the Al (M) property
showed improved performance in predictive metrics, with an R2 value of 0.38 and an RMSE
of 0.4 cmolc.dm−3. In contrast, the raw treatment yielded better metrics for pH (SMP),
V% (AER), and SB% (M), with mean R2 values of 0.38, 0.45, and 0.63 and RPIQ values of
0.82, 0.99, and 0.11, respectively. For V% (M), the standardized treatment provided the
best metrics, with an R2 value of 0.38, an RMSE of 10.44%, and an RPIQ of 0.96. Finally,
for CEC (M), the raw treatment yielded the highest mean R2 value at 0.77 and an RPIQ
of 0.07, although the optimized treatment showed a lower RMSE, with a mean value of
19.47 cmolc.dm−3.

Table 1. Accuracy parameters of the three proposed approaches, modeling by Cubist model.

Mean Training Mean Validation

Soil
Database N Outliers R2 RMSE RPIQ R2 RMSE RPIQProperty

OM
Raw 18,716 - 0.93 5.33 1.70 0.84 8.19 1.1
Std 18,716 - 0.93 5.21 1.74 0.87 7.79 1.16
Opt 18,394 322 0.92 3.37 2.67 0.80 5.36 1.68

pH (CaCl2)
Raw 18,731 - 0.79 0.22 1.39 0.43 0.35 0.85
Std 18,731 - 0.78 0.22 1.37 0.43 0.35 0.85
Opt 18,398 333 0.77 0.21 1.43 0.42 0.33 0.9

pH (SMP)
Raw 2363 - 0.77 0.16 1.28 0.38 0.24 0.82
Std 2363 - 0.77 0.16 1.36 0.36 0.25 0.79
Opt 2328 35 0.75 0.15 1.35 0.38 0.25 /

H + Al (AER)
Raw 16,368 - 0.82 12.69 1.10 0.54 20.33 0.69
Std 16,368 - 0.82 12.59 1.11 0.53 20.44 0.69
Opt 16,081 287 0.82 10.99 1.18 0.53 17.54 0.74

H + Al (M)
Raw 2363 - 0.78 0.77 1.16 0.36 1.34 0.66
Std 2363 - 0.77 0.79 1.12 0.36 1.32 0.67
Opt 2306 57 0.76 0.75 1.20 0.38 1.21 0.74

Al (AER)
Raw 9107 - 0.70 3.00 0.43 0.24 5.24 0.25
Std 9107 - 0.71 3.11 0.42 0.23 4.77 0.27
Opt 9068 39 0.72 2.74 0.44 0.21 4.37 0.28

Al (M)
Raw 565 - 0.70 0.25 0.21 0.31 0.42 0.12
Std 565 - 0.72 0.25 0.20 0.31 0.38 0.13
Opt 554 11 0.76 0.20 0.30 0.33 0.40 0.12

P (AER)
Raw 16,312 - 0.69 20.89 0.62 0.25 30.19 0.43
Std 16,312 - 0.70 20.73 0.63 0.26 29.89 0.44
Opt 16,148 164 0.74 13.65 0.88 0.35 22.20 0.54

P (M)
Raw 2489 - 0.56 9.13 0.36 0.08 9.80 0.31
Std 2489 - 0.57 9.16 0.35 0.08 10.60 0.28
Opt 2383 106 0.68 3.62 0.80 0.19 5.91 0.49

Ca (AER)
Raw 16,275 - 0.75 11.46 0.97 0.42 15.88 0.69
Std 16,275 - 0.75 11.61 0.96 0.44 15.58 0.71
Opt 16,146 126 0.81 8.09 1.36 0.52 12.80 0.86

Ca (M)
Raw 2363 - 0.80 0.71 1.32 0.48 1.15 0.82
Std 2363 - 0.80 0.71 1.32 0.49 1.12 0.83
Opt 2281 82 0.81 0.64 1.44 0.45 1.09 0.82

Mg (AER)
Raw 16,204 - 0.71 6.34 0.80 0.38 8.16 0.61
Std 16,204 - 0.74 5.77 0.88 0.36 9.32 0.54
Opt 16,125 79 0.79 4.25 1.18 0.47 6.82 0.73
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Table 1. Cont.

Mean Training Mean Validation

Soil
Database N Outliers R2 RMSE RPIQ R2 RMSE RPIQProperty

Mg (M)
Raw 2363 - 0.75 0.40 1.32 0.36 0.66 0.8
Std 2363 - 0.75 0.41 1.30 0.37 0.63 0.84
Opt 2325 38 0.75 0.37 1.45 0.37 0.62 0.87

K (AER)
Raw 15,946 - 0.70 0.89 0.91 0.24 1.41 0.57
Std 15,946 - 0.71 0.84 0.95 0.25 1.49 0.54
Opt 15,846 100 0.72 0.76 1.06 0.29 1.19 0.67

K (M)
Raw 2362 - 0.69 0.11 1.12 0.22 0.16 0.67
Std 2362 - 0.70 0.10 1.18 0.24 0.18 0.68
Opt 2351 11 0.70 0.10 1.12 0.23 0.16 0.7

SB (AER)
Raw 15,868 - 0.78 15.45 1.10 0.35 29.46 0.56
Std 15,868 - 0.75 17.62 0.96 0.45 22.66 0.74
Opt 15,736 132 0.82 11.99 1.38 0.52 19.46 0.85

SB (M)
Raw 2863 - 0.88 7.95 0.19 0.63 12.80 0.11
Std 2863 - 0.86 8.27 0.18 0.60 13.58 0.11
Opt 2583 254 0.85 7.31 0.18 0.57 12.96 0.1

V% (AER)
Raw 15,867 - 0.78 8.27 1.57 0.45 13.12 0.99
Std 15,867 - 0.78 8.23 1.58 0.41 13.48 0.96
Opt 15,845 22 0.78 8.29 1.57 0.43 13.15 0.99

V% (M)
Raw 2863 - 0.77 6.34 1.58 0.35 10.59 0.95
Std 2863 - 0.75 6.57 1.52 0.38 10.44 0.96
Opt 2784 79 0.75 6.27 1.44 0.29 10.75 0.84

CEC (AER)
Raw 15,868 - 0.89 13.48 1.83 0.55 32.16 0.76
Std 15,868 - 0.86 16.44 1.52 0.66 24.45 1.01
Opt 15,673 195 0.90 11.97 2.04 0.74 19.05 1.28

CEC (M)
Raw 2863 - 0.92 12.36 0.11 0.77 21.25 0.07
Std 2863 - 0.91 13.03 0.11 0.76 22.27 0.06
Opt 2583 280 0.91 11.12 0.11 0.75 19.47 0.06

S
Raw 5540 - 0.81 10.58 0.38 0.52 15.51 0.26
Std 5540 - 0.82 10.05 0.40 0.47 17.78 0.23
Opt 5345 195 0.73 7.54 0.53 0.34 12.19 0.33

Clay
Raw 2825 - 0.94 43.18 3.06 0.85 65.80 2.04
Std 2825 - 0.94 41.32 3.20 0.82 73.33 1.8
Opt 2792 33 0.94 42.04 3.12 0.82 71.18 1.85

Silt
Raw 2820 - 0.89 34.54 1.39 0.68 59.21 0.8
Std 2820 - 0.89 35.20 1.37 0.67 57.61 0.84
Opt 2780 40 0.89 34.87 1.38 0.69 56.34 0.85

Sand
Raw 2825 - 0.92 62.73 3.25 0.78 105.69 1.92
Std 2825 - 0.92 63.34 3.21 0.80 102.07 1.98
Opt 2820 5 0.92 62.56 3.24 0.79 103.77 1.96

B
Raw 2528 - 0.62 0.24 0.41 0.20 0.21 0.42
Std 2528 - 0.55 0.26 0.38 0.17 0.25 0.34
Opt 2438 90 0.76 0.08 0.90 0.44 0.12 0.59

Cu
Raw 2443 - 0.74 1.89 0.38 0.42 2.21 0.32
Std 2443 - 0.72 1.91 0.38 0.43 2.36 0.3
Opt 2342 101 0.88 0.86 0.82 0.73 1.24 0.56

Fe
Raw 2475 - 0.85 18.01 1.21 0.59 28.09 0.78
Std 2475 - 0.85 17.46 1.30 0.58 29.99 0.7
Opt 2406 69 0.86 16.31 1.35 0.59 27.33 0.77

Mn
Raw 2492 - 0.74 8.35 0.26 0.37 10.81 0.2
Std 2492 - 0.77 6.69 0.32 0.20 16.63 0.13
Opt 2278 214 0.79 4.93 0.39 0.50 7.53 0.26

Zn
Raw 2487 - 0.56 6.64 0.19 0.01 11.02 0.1
Std 2487 - 0.49 8.51 0.15 0.05 7.81 0.17
Opt 2329 158 0.57 4.88 0.26 0.01 15.01 0.08

N—number of samples; Std—standardized; Opt—optimized.
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For the macronutrient properties, RMSE consistently showed better results in the
optimized treatment across all nutrients. For P (AER), K (AER), Ca (AER), Mg (AER), P
(M), and Mg (M), the optimized treatment significantly improved the R2 value and RPIQ,
with R2 values between 0.19 and 0.52 and RPIQ values ranging from 0.49 to 0.87. For K
(M) and P (M), the optimized treatment yielded similar effects as observed for OM, with a
decrease in model fit but improvements in RMSE and RPIQ, where R2 reached 0.23 and
0.34, and RPIQ was 0.70 and 0.33, respectively. Although P and K are not expected to show
a direct spectral response in the Vis-NIR range, they can still be predicted with notable
precision, as supported by the existing literature [36]. The only macronutrient property for
which the optimized treatment did not yield the best potential was Ca (M). In this case, the
standardized treatment showed the highest potential, with an R2 value of 0.49 and an RPIQ
of 0.83.

The optimized data treatment showed the best prediction for micronutrients B, Cu,
Fe and Mn, with mean RMSE values ranging from 27.33 to 0.12 mg.dm−3 and the RPIQ
ranging from 0.26 to 0.77. Alternatively, although low, the standardized treatment obtained
the best result for Zn, with mean R2 values of 0.05 and an RPIQ of 0.17. Notably, the
model fit for B and Cu improved significantly, with R2 values from 0.2 and 0.42 in the
raw database to 0.44 and 0.73, respectively, in the optimized database. Micronutrients
typically occur in soil at concentrations too low to be directly detected in soil spectra, even
when they exhibit inherently strong spectral peaks. Consequently, predicting micronutrient
levels relies largely on their correlations with other soil properties. For instance, elements
like Cu, Mn, and Zn often correlate with carbonate minerals and, more prominently, with
Fe-bearing minerals [37].

Our results indicate that combining different spectral analysis systems can overcome
the limitations of each individual method. Although each system did not achieve optimal
performance in isolation, the integration of a system that standardizes spectral signa-
tures with another that automatically detects discrepant samples resulted in significant
improvements in the accuracy of soil attribute predictions.

Of the 30 properties analyzed, 21 showed significantly better responses, demonstrating
the effectiveness of the combined approach. Furthermore, the superiority of the Mehlich-1
extraction method over the Anion Exchange Resin method suggests that the choice of
chemical analysis methodology is crucial for obtaining reliable results. This reinforces the
importance of spectroscopy as a valuable tool for soil analysis, promoting a more efficient
and sustainable management of soil resources, which is key to meeting the growing demand
for food and preserving soil health.

4. Discussion

The literature indicates that the successful prediction of P and K using Vis-NIR-SWIR
spectroscopy largely depends on co-variation with other spectrally active soil constituents,
such as organic matter, iron oxides, clay mineralogy, and moisture [38]. For instance,
models for total P often leverage correlations with IR-active compounds, while K models
are influenced by the absorbance patterns of illite clay minerals in the SWIR range [39].
However, this co-variation varies across datasets, leading to fluctuations in prediction accu-
racy. In our study, the prediction of P and K remained imprecise, even after optimization.
Similar challenges have been reported in previous studies, where P prediction has yielded
low R2 values (0.23–0.47), reflecting the complexity of P availability, which is influenced by
sorption dynamics and soil pH [40–42].

Conversely, Ca prediction models have demonstrated higher accuracy. This is likely
due to Ca’s association with strongly IR-active materials, which provide distinct spectral
features. For instance, [37] and [43] reported satisfactory Ca prediction models with R2

values of 0.86–0.90 for untreated samples.
Organic matter (OM) also shows strong correlations with spectral reflectance, mainly

in the VIS range, largely because of its influence on soil color. Elements such as Fe and
Cu enhance red to brown hues, Mn darkens soils, and Zn lightens them, directly affecting
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spectral signals [44] in this region as well. Despite this, micronutrient prediction using
spectroscopy remains challenging. For example, Johnson et al. [43] reported unsatisfactory
predictions for Mehlich-3-extractable Fe, Mn, Cu, and Zn, with R2 values of 0.38, 0.32,
0.43, and 0.44, respectively, in soils from sub-Saharan Africa. Similarly, Terra et al. [33]
observed low prediction accuracy for extractable Fe (R2 = 0.39) and Zn (R2 = 0.26) in
Brazilian soils, though Mn showed moderate accuracy (R2 = 0.54), and Cu achieved better
accuracy (R2 = 0.69) in the Vis-NIR range.

The spectral regions linked to micronutrient prediction have been explored extensively.
Morón and Cozzolino [45] identified significant spectral bands for Fe, Cu, and Zn in
the 400–800 nm range, around 1100 and 1400 nm, and between 1900 and 2500 nm in
Uruguayan soils. They attributed the strong correlations in these bands to the adsorption
characteristics of micronutrient oxides and the secondary adsorption of clay minerals.
Similarly, Singh et al. [46] noted that absorption around 550 and 850 nm is related to the
electronic transitions of Fe2+ and Fe3+.

These findings underscore the variability in prediction accuracy for soil nutrients and
the importance of considering both co-variations and specific spectral features to enhance
model performance. To that end, the optimization enabled a better performance of the
spectral-based prediction models.

5. Creation Sequence, Advantages and Limitations of a Hybrid Laboratory

Creating a low-environmental-impact hybrid laboratory for soil analysis involves inte-
grating traditional laboratory methods (chemical) with advanced spectroscopy techniques.
This procedure aims to optimize the analysis of soil properties, reducing the use of harmful
chemical products and improving the efficiency of analytical processes. The hybrid analysis
laboratory works as follows: Upon arrival at the laboratory (after sieving and air-drying),
all soil samples (100%) undergo initial spectroscopy analysis and standardization using the
ISS samples. The resulting spectra are then processed using a chemometric approach, which
segments the population into subpopulations based on specific characteristics. The number
of subpopulations depends on the samples received and can be determined using clustering
or other appropriate techniques. A representative subset of these subpopulations is then
selected for wet chemistry analysis, which serves as the basis for calibrating soil property
prediction models. This hybrid approach enhances efficiency, with the recommended
percentage of samples used for calibration varying according to the analytical context and
methods applied. However, a recent study [1] suggests that a hybrid approach, where 80%
of soil samples are analyzed by spectroscopic techniques and 20% by traditional ones, can
optimize the quality of analytical control. This ratio of between 20 and 80% is an estimate
and will depend on other factors, such as the total number of samples, the heterogeneity of
the population, the total cost of the analyses and the accuracy of the prediction model [1].
The use of spectroscopic techniques is not limited to quantification alone. After completing
the wet analysis, its quality must be evaluated, and any outliers should be reanalyzed
before proceeding.

At this stage, choosing the right sensors for wet chemistry is crucial. These sensors
must be able to measure multiple soil properties in a single reading with high precision,
such as pH, organic matter and cation exchange capacity (CEC). At this stage, laboratories
have a range of strategies they can adopt, with spectrometers operating in the visible, near-
infrared and short-wave infrared (VIS-NIR-SWIR: 400–2500 nm) and mid-infrared (MIR:
2500–25,000 nm) ranges. VIS-NIR-SWIR spectroscopy allows multiple soil properties to be
analyzed in a single spectral reading, speeding up the analysis process. Sensors can be used
to analyze large volumes of samples quickly, which is ideal for applications in precision
agriculture, large-scale monitoring and resource management [47]. In addition, the sensors
are generally portable and easy to operate, allowing the analysis to be carried out directly
in the field without the need for sophisticated laboratories. It is worth saying that the
spectral measurement and analysis render the utilization of toxic reagents preserving the
environment and can be termed as “green”.
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It is essential to establish protocols for quality control and staff training, which include
regular checks on the precision and accuracy of the sensors. This can be conducted by con-
tinuously comparing sensor results with the data obtained by traditional methods [13,15].
The use of reference samples such as the LB and WB as ISS for spectroscopy and repeated
analysis are recommended practices. The same practices, however, should be implemented
in wet chemistry analyses, which is still not considered in the VIS-NIR-SWIR analysis.
Laboratory staff must be trained to operate the sensors, interpret the data generated and
understand the calibration methodology [23]. This includes knowledge of chemometrics,
which is essential for analyzing and interpreting spectral data. These aspects are in line
with recent initiatives such as the ISO soil standard and protocol for VIS-NIR-SWIR mea-
surement within the IEEE Standards Association (https://standards.ieee.org/, accessed on
30 August 2024) and the Global Soil Partnership in the World Soil Laboratory Network,
using wet and spectral data (http://www.fao.org/global-soil-partnership/glosolan/en/,
accessed on 30 August 2024), which aim to guarantee compliance with standards and the
effectiveness of spectroscopic analyses, requiring laboratories to be certified by competent
bodies, as well as demanding detailed reports and the creation of an accessible database for
comparing results, in order to improve the quality of analyses, ensure environmental safety
and increase public confidence in the information generated [15].

An important takeaway from this work is that the proposed standards and protocols
for spectral analyses not only enable the better harmonization and follow-up of VIS-NIR-
SWIR analyses using multiple soil spectral libraries, but they can also be used to assess
the performance of individual laboratories from one measurement session to another. This
approach facilitates the quality control of spectral data within each measurement scheme,
ensuring consistency and reliability. It is also worth mentioning that a similar level of
harmonization is strongly required for the same procedures.

Finally, sensor data should be integrated into a data management system that enables
real-time analysis and visualization. This may involve software that interprets spectral
readings and provides recommendations based on predictive models. Implementing a
feedback system is highly recommended to support continuous improvement in analytical
processes, allowing for regular result reviews, calibration model updates, and adaptations
in laboratory practices. What follows is a film illustration of the system: https://youtu.
be/kv0ATo-ddoc (accessed on 1 December 2024) and https://youtu.be/Gz4_FGVcEEw
(accessed on 1 December 2024).

Challenges and Limitations

Despite the many advantages that laboratories offer, some challenges and limitations
are still noticeable when implementing this routine. The first concerns the dependence on
reference data, since the effectiveness of spectroscopic models depends on the accuracy
of the data obtained by traditional methods [13,48]. To that end, it is important that all
laboratories that generate SSLs use the same ISS such as LB and WB in order to allow
the future harmonization of different users. If the reference data are inaccurate, this can
compromise the quality of the predictions. Allied to this is the variability in results since
different sensors can show variations in measurements, which require strict protocols for
standardization, and our work has focused on overcoming this challenge [15,23]. Acquiring
high-quality sensor infrastructure needed to integrate them into existing processes can
be expensive, and this includes not only the cost of the equipment but also the need for
specialized software for data analysis and maintaining a routine spectral and radiance
calibration of the sensors. In addition, the results obtained by proximal sensors can show
variability, which can be a challenge for data acceptance. The accuracy and reliability of
sensors depend on factors such as environmental conditions and soil characteristics, which
can lead to discrepancies with traditional methods [22]. Although proximal sensors are
promising, they have limitations, such as the inability to detect certain soil properties with
the same precision as traditional methods. For instance, this can limit their applicability in
analyses that require high precision.

https://standards.ieee.org/
http://www.fao.org/global-soil-partnership/glosolan/en/
https://youtu.be/kv0ATo-ddoc
https://youtu.be/kv0ATo-ddoc
https://youtu.be/Gz4_FGVcEEw
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An important bottleneck is the construction of datasets. This is the main concern and
doubt of users. How does one construct a dataset? Novais et al. [49] has indicated some
strategies on how to do this. In summary, each wet laboratory should initiate this library
and thus have its own one to continue the work. In the meantime, open access systems
such as the Brazilian Soil Spectral Services (Braspecs) [50] and other upcoming ones will
give support to this understanding.

Implementing a hybrid laboratory requires continuous research to optimize methods
and guarantee the accuracy of predictive models. The change from traditional methods to
more modern technologies can be met with resistance from laboratory staff and managers.
This resistance can be based on a preference for established methods or a lack of confidence
in new technologies. And finally, despite its advantages, spectroscopy cannot completely
replace traditional methods, especially in analyses that require extreme precision or in
specific soil conditions. Overcoming these obstacles requires careful planning, investments
in training and technology, and a commitment to the continuous improvement of analytical
processes. The successful integration of proximal sensors can lead to a more efficient and
sustainable laboratory, capable of meeting the growing demands for soil analysis.

6. Conclusions

The adoption of a methodology for data standardization, as recommended by Ben
Dor et al. [13], was essential to balance data from different sensors. In addition, the detection
of outliers by the method proposed by Jung et al. [16] contributed to the construction of a
more robust and reliable database for predicting soil properties.

We can state that the prediction of Vis-NIR-SWIR reflectance data on physicochemical
properties, macronutrients and micronutrients was promising after applying these method-
ologies, where, of the 30 properties analyzed, 21 presented superior statistical models,
offering cost and time efficiency.

The protocol sequence presented in this work is innovative and can serve as a basis
for the development of a robust sequence of methods for the estimation of soil analysis,
contributing to environmental health and reducing dependence on chemical products. As
mentioned, this does not substitute the wet laboratory analysis but is integrated in the
system. The bottleneck of discussions regarding chemistry analysis (Ca, K, Mg and others)
showed here that it is possible to use this protocol but depends on the population of soil
property distribution, number of samples, spectroscopic technique, and acceptable error of
the laboratory.

The research community can achieve the development of this fantastic technique in
the near future but needs to direct efforts towards the indicated bottlenecks. With the
insertion of artificial intelligence, it is expected to reach improvements in discerning many
soil properties.
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Appendix A

Table A1. Descriptive Statistics of Soil Properties.

Soil Property Number of Samples Units 1◦ Q Median 3◦ Q Min Max Mean Std Dev

OM 18,716 g.dm−3 23 32 42 7 70 34.53 20.64
pH (CaCl2) 18,731 - 4.6 4.9 5.2 3.7 6.1 4.92 0.47
pH (SMP) 2363 - 5.54 5.74 5.95 4.9 6.56 5.74 0.32

H + Al (AER) 16,368 mmolc.dm−3 38 52 70 7 117 58.16 29.76
H + Al (M) 2363 cmolc.dm−3 5.22 6.12 7.23 2.2 10.2 6.33 1.66
Al (AER) 9107 mmolc.dm−3 1.1 2.4 1.1 0.5 12.1 4.44 5.64

Al (M) 565 cmolc.dm−3 0.07 0.12 0.27 0.1 0.57 0.3 0.46
P (AER) 16,312 mg.dm−3 14 27 47 2 47 35.88 36.66

P (M) 2489 mg.dm−3 5.9 8.9 13.4 1 24.4 11.05 13.11
Ca (AER) 16,272 cmolc.dm−3 18 29 44 4 83 32.94 22.46

Ca (M) 2363 cmolc.dm−3 4.02 4.97 5.85 1.3 8.47 4.9 1.59
Mg (AER) 16,204 cmolc.dm−3 7 12 20 2 39 14.78 11.39

Mg (M) 2413 cmolc.dm−3 1.61 2.15 2.66 0.1 4.2 2.16 0.82
K (AER) 15,946 cmolc.dm−3 1.6 2.4 3.5 0.6 6.3 2.71 1.62

K (M) 2362 cmolc.dm−3 0.23 0.34 0.48 0 0.85 0.36 0.19
SB (AER) 15,868 mmolc.dm−3 27.2 43.8 66.4 0.3 125 49.87 33.82

SB (M) 2863 cmolc.dm−3 6.6 8.1 10.2 1.5 15.3 15.86 22.08
V% (AER) 15,867 % 32 45 58 2 97 45.06 17.54

V% (M) 2863 % 45 54 61 21 85 52.22 13.17
CEC (AER) 15,868 mmolc.dm−3 78.3 102.9 130.4 11 208 107.9 42.93

CEC (M) 2863 cmolc.dm−3 12.8 14.2 16.6 7.1 21.9 32.11 44
S 5540 mg.dm−3 5 9 18 2.5 37.4 16.69 23.7

Clay 2825 g.Kg−1 237 369 522 32 769 381.5 170.8
Silt 2820 g.Kg−1 106 154 245.8 32 455 184.5 103.34

Sand 2825 g.Kg−1 245 448 626 29 890 434.1 224.64
B 2528 mg.dm−3 0.21 0.29 0.41 0.1 0.71 0.34 0.37

Cu 2443 mg.dm−3 1.1 1.8 3.3 0.4 6.6 2.89 3.49
Fe 2475 mg.dm−3 44 67 100 7 184 77.78 45.42
Mn 2492 mg.dm−3 3.4 5.5 10.38 0.8 20.8 10.34 15.54
Zn 2487 mg.dm−3 1.1 2.3 3.8 0.2 7.8 3.88 10.24
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C. Soil Organic Carbon Estimation Using VNIR–SWIR Spectroscopy: The Effect of Multiple Sensors and Scanning Conditions.
Soil Tillage Res. 2021, 211, 105017. [CrossRef]

36. Xu, S.; Zhao, Y.; Wang, M.; Shi, X. Comparison of Multivariate Methods for Estimating Selected Soil Properties from Intact Soil
Cores of Paddy Fields by Vis–NIR Spectroscopy. Geoderma 2018, 310, 29–43. [CrossRef]

37. Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; Macdonald, L.M.; McLaughlin, M.J. The Performance of Visible, Near-, and
Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev.
2014, 49, 139–186. [CrossRef]

38. Mouazen, A.M.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among Principal Component, Partial Least Squares
and Back Propagation Neural Network Analyses for Accuracy of Measurement of Selected Soil Properties with Visible and near
Infrared Spectroscopy. Geoderma 2010, 158, 23–31. [CrossRef]

39. Kusuma, C.G.; Bhoomika, S.A.; Dharumarajan, S. Prediction of Soil Nutrients Using Visible-near-Infrared Reflectance Laboratory
Spectroscopy. In Remote Sensing of Soils; Elsevier: Amsterdam, The Netherlands, 2024; pp. 493–502.

40. Confalonieri, M.; Fornasier, F.; Ursino, A.; Boccardi, F.; Pintus, B.; Odoardi, M. The Potential of near Infrared Reflectance
Spectroscopy as a Tool for the Chemical Characterisation of Agricultural Soils. J. Near Infrared Spectrosc. 2001, 9, 123–131.
[CrossRef]

41. He, Y.; Huang, M.; García, A.; Hernández, A.; Song, H. Prediction of Soil Macronutrients Content Using Near-Infrared Spec-
troscopy. Comput. Electron. Agric. 2007, 58, 144–153. [CrossRef]

42. Reeves, J.B.; Smith, D.B. The Potential of Mid- and near-Infrared Diffuse Reflectance Spectroscopy for Determining Major- and
Trace-Element Concentrations in Soils from a Geochemical Survey of North America. Appl. Geochem. 2009, 24, 1472–1481.
[CrossRef]

43. Dunn, B.W.; Batten, G.D.; Beecher, H.G.; Ciavarella, S. The Potential of Near-Infrared Reflectance Spectroscopy for Soil Analysis—
A Case Study from the Riverine Plain of South-Eastern Australia. Aust. J. Exp. Agric. 2002, 42, 607. [CrossRef]

44. Mozaffari, H.; Moosavi, A.A.; Ostovari, Y.; Nematollahi, M.A.; Rezaei, M. Developing Spectrotransfer Functions (STFs) to Predict
Basic Physical and Chemical Properties of Calcareous Soils. Geoderma 2022, 428, 116174. [CrossRef]

45. Moron, A.; Cozzolino, D. Exploring the Use of near Infrared Reflectance Spectroscopy to Study Physical Properties and
Microelements in Soils. J. Near Infrared Spectrosc. 2003, 11, 145–154. [CrossRef]

46. Singh, K.; Majeed, I.; Panigrahi, N.; Vasava, H.B.; Fidelis, C.; Karunaratne, S.; Bapiwai, P.; Yinil, D.; Sanderson, T.; Snoeck, D.; et al.
Near Infrared Diffuse Reflectance Spectroscopy for Rapid and Comprehensive Soil Condition Assessment in Smallholder Cacao
Farming Systems of Papua New Guinea. Catena 2019, 183, 104185. [CrossRef]

47. Demattê, J.A.M.; da Silva Terra, F. Spectral Pedology: A New Perspective on Evaluation of Soils along Pedogenetic Alterations.
Geoderma 2014, 217–218, 190–200. [CrossRef]

48. Angelopoulou, T.; Dimitrakos, A.; Terzopoulou, E.; Zalidis, G.; Theocharis, J.; Stafilov, T.; Zouboulis, A. Reflectance Spectroscopy
(Vis-NIR) for Assessing Soil Heavy Metals Concentrations Determined by Two Different Analytical Protocols, Based on ISO 11466
and ISO 14869-1. Water Air Soil Pollut. 2017, 228, 436. [CrossRef]

49. Novais, J.J.M.; Rosin, N.A.; Rosas, J.T.F.; Poppiel, R.R.; Dotto, A.C.; Paiva, A.F.S.; Bellinaso, H.; Albarracín, H.S.R.; Amorim,
M.T.A.; Bartsch, B.D.A.; et al. The Brazilian Soil Spectral Library Data Opening. Dokuchaev Soil Bull. 2024, 119, 261–305. [CrossRef]

50. Demattê, J.A.M.; Paiva, A.F.D.S.; Poppiel, R.R.; Rosin, N.A.; Ruiz, L.F.C.; Mello, F.A.D.O.; Minasny, B.; Grunwald, S.; Ge, Y.; Ben
Dor, E.; et al. The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication.
Remote Sens. 2022, 14, 740. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.still.2021.105017
https://doi.org/10.1016/j.geoderma.2017.09.013
https://doi.org/10.1080/05704928.2013.811081
https://doi.org/10.1016/j.geoderma.2010.03.001
https://doi.org/10.1255/jnirs.299
https://doi.org/10.1016/j.compag.2007.03.011
https://doi.org/10.1016/j.apgeochem.2009.04.017
https://doi.org/10.1071/EA01172
https://doi.org/10.1016/j.geoderma.2022.116174
https://doi.org/10.1255/jnirs.362
https://doi.org/10.1016/j.catena.2019.104185
https://doi.org/10.1016/j.geoderma.2013.11.012
https://doi.org/10.1007/s11270-017-3609-9
https://doi.org/10.19047/0136-1694-2024-119-261-305
https://doi.org/10.3390/rs14030740

	Introduction 
	Materials and Methods 
	Soil Samples 
	Chemical and Physical Analysis 
	Soil Spectroscopic Analysis 
	Standardized Dataset 
	Optimized Dataset 

	Predictive Modeling 

	Results 
	Analysis Description of Laboratory Data 
	Correlation Between Soil Properties and Spectra of the Vis-Nir-Swir Region 
	Standardized Database Predictive Models—ISS Approach 
	Comparison of Results of Predictive Models Between Databases 

	Discussion 
	Creation Sequence, Advantages and Limitations of a Hybrid Laboratory 
	Conclusions 
	Appendix A
	References

