Filtros : "Financiamento FAPESP" "Mathematical Methods in the Applied Sciences" Limpar

Filtros



Refine with date range


  • Source: Mathematical Methods in the Applied Sciences. Unidade: IEE

    Assunto: MODELOS MATEMÁTICOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABDALA, Laryssa e MADY, Carlos Eduardo Keutenedjian e CORREA, Maicon Ribeiro. A Heart Chamber Model Using a Capacitance Function Combined With the Navier–Stokes Equations. Mathematical Methods in the Applied Sciences, p. 1-22, 2025Tradução . . Acesso em: 08 out. 2025.
    • APA

      Abdala, L., Mady, C. E. K., & Correa, M. R. (2025). A Heart Chamber Model Using a Capacitance Function Combined With the Navier–Stokes Equations. Mathematical Methods in the Applied Sciences, 1-22.
    • NLM

      Abdala L, Mady CEK, Correa MR. A Heart Chamber Model Using a Capacitance Function Combined With the Navier–Stokes Equations. Mathematical Methods in the Applied Sciences. 2025 ;1-22.[citado 2025 out. 08 ]
    • Vancouver

      Abdala L, Mady CEK, Correa MR. A Heart Chamber Model Using a Capacitance Function Combined With the Navier–Stokes Equations. Mathematical Methods in the Applied Sciences. 2025 ;1-22.[citado 2025 out. 08 ]
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: ATRATORES, PROBLEMAS DE CONTORNO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity. Mathematical Methods in the Applied Sciences, v. 48, n. 14, p. 13456-13474, 2025Tradução . . Disponível em: https://doi.org/10.1002/mma.11115. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Pecorari Neto, C., López-Lázaro, H., & Seminario-Huertas, P. N. (2025). Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity. Mathematical Methods in the Applied Sciences, 48( 14), 13456-13474. doi:10.1002/mma.11115
    • NLM

      Bortolan MC, Pecorari Neto C, López-Lázaro H, Seminario-Huertas PN. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ; 48( 14): 13456-13474.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.11115
    • Vancouver

      Bortolan MC, Pecorari Neto C, López-Lázaro H, Seminario-Huertas PN. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ; 48( 14): 13456-13474.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.11115
  • Source: Mathematical Methods in the Applied Sciences. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DA ONDA, TORNADOS, ESPAÇOS MÉTRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime. Mathematical Methods in the Applied Sciences, v. 46, p. 2602-2635, 2023Tradução . . Disponível em: https://doi.org/10.1002/mma.8663. Acesso em: 08 out. 2025.
    • APA

      Ebert, M. R., & Marques, J. (2023). Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime. Mathematical Methods in the Applied Sciences, 46, 2602-2635. doi:10.1002/mma.8663
    • NLM

      Ebert MR, Marques J. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46 2602-2635.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.8663
    • Vancouver

      Ebert MR, Marques J. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46 2602-2635.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.8663
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, v. 45, n. Ja 2022, p. 579-584, 2022Tradução . . Disponível em: https://doi.org/10.1002/mma.7798. Acesso em: 08 out. 2025.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2022). On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, 45( Ja 2022), 579-584. doi:10.1002/mma.7798
    • NLM

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.7798
    • Vancouver

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.7798
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: ATRATORES, ELASTICIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Rawlilson de Oliveira et al. Global attractors for a system of elasticity with small delays. Mathematical Methods in the Applied Sciences, v. 44, n. 8, p. 6911-6922, 2021Tradução . . Disponível em: https://doi.org/10.1002/mma.7232. Acesso em: 08 out. 2025.
    • APA

      Araújo, R. de O., Bocanegra-Rodríguez, L. E., Calsavara, B. M. R., Seminario-Huertas, P. N., & Sotelo-Pejerrey, A. (2021). Global attractors for a system of elasticity with small delays. Mathematical Methods in the Applied Sciences, 44( 8), 6911-6922. doi:10.1002/mma.7232
    • NLM

      Araújo R de O, Bocanegra-Rodríguez LE, Calsavara BMR, Seminario-Huertas PN, Sotelo-Pejerrey A. Global attractors for a system of elasticity with small delays [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 44( 8): 6911-6922.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.7232
    • Vancouver

      Araújo R de O, Bocanegra-Rodríguez LE, Calsavara BMR, Seminario-Huertas PN, Sotelo-Pejerrey A. Global attractors for a system of elasticity with small delays [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 44( 8): 6911-6922.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.7232

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025