Convergence of mayer series via Cauchy-Kowalewski majorant methods with application (2003)
- Authors:
- Autor USP: MARCHETTI, DOMINGOS HUMBERTO URBANO - IF
- Unidade: IF
- Subjects: FÍSICA MATEMÁTICA; TOPOLOGIA
- Language: Inglês
- Imprenta:
-
ABNT
GUIDI, Leonardo F e MARCHETTI, Domingos H. U. Convergence of mayer series via Cauchy-Kowalewski majorant methods with application. . São Paulo: IFUSP. Disponível em: http://xxx.if.usp.br/PS_cache/math-ph/pdf/0310/0310025.pdf. Acesso em: 07 jun. 2023. , 2003 -
APA
Guidi, L. F., & Marchetti, D. H. U. (2003). Convergence of mayer series via Cauchy-Kowalewski majorant methods with application. São Paulo: IFUSP. Recuperado de http://xxx.if.usp.br/PS_cache/math-ph/pdf/0310/0310025.pdf -
NLM
Guidi LF, Marchetti DHU. Convergence of mayer series via Cauchy-Kowalewski majorant methods with application [Internet]. 2003 ;[citado 2023 jun. 07 ] Available from: http://xxx.if.usp.br/PS_cache/math-ph/pdf/0310/0310025.pdf -
Vancouver
Guidi LF, Marchetti DHU. Convergence of mayer series via Cauchy-Kowalewski majorant methods with application [Internet]. 2003 ;[citado 2023 jun. 07 ] Available from: http://xxx.if.usp.br/PS_cache/math-ph/pdf/0310/0310025.pdf - Conformal universality in normal matrix ensembles
- Quantum states allowing minimum uncertainty product of `fi´ and `L IND.z´
- Hierarchical spherical model from a geometric point of view
- On the Mayer series of two-dimensional Yukawa gas at inverse temperature in the interval of collapse
- Cadeias de Heisenberg: uma abordagem via estatística di dímeros
- Ground-state analysis of the Falicov-Kimball model on complete graphs
- Fluxo de grupo de renormalização em modelos hierárquicos
- Conformal deformation from normal to hermitian random matrix ensembles
- Hierarchical model exhibiting the kosterlitz-thouless fixed point.
- Conformal deformation of equilibrium measures in normal random ensembles
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas