Filtros : "Neurocomputing" "2015" Limpar

Filtros



Refine with date range


  • Source: Neurocomputing. Unidade: FFCLRP

    Subjects: INTELIGÊNCIA ARTIFICIAL, APRENDIZADO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUPERTINO, Thiago H. e ZHAO, Liang e CARNEIRO, Murillo G. Network-based supervised data classification by using an heuristic of ease of access. Neurocomputing, v. 149, p. 86-92, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.03.071. Acesso em: 12 nov. 2025.
    • APA

      Cupertino, T. H., Zhao, L., & Carneiro, M. G. (2015). Network-based supervised data classification by using an heuristic of ease of access. Neurocomputing, 149, 86-92. doi:10.1016/j.neucom.2014.03.071
    • NLM

      Cupertino TH, Zhao L, Carneiro MG. Network-based supervised data classification by using an heuristic of ease of access [Internet]. Neurocomputing. 2015 ; 149 86-92.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.03.071
    • Vancouver

      Cupertino TH, Zhao L, Carneiro MG. Network-based supervised data classification by using an heuristic of ease of access [Internet]. Neurocomputing. 2015 ; 149 86-92.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.03.071
  • Source: Neurocomputing. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Luís P. F e CARVALHO, André Carlos Ponce de Leon Ferreira de e LORENA, Ana C. Effect of label noise in the complexity of classification problems. Neurocomputing, v. 160, p. 108-119, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.10.085. Acesso em: 12 nov. 2025.
    • APA

      Garcia, L. P. F., Carvalho, A. C. P. de L. F. de, & Lorena, A. C. (2015). Effect of label noise in the complexity of classification problems. Neurocomputing, 160, 108-119. doi:10.1016/j.neucom.2014.10.085
    • NLM

      Garcia LPF, Carvalho ACP de LF de, Lorena AC. Effect of label noise in the complexity of classification problems [Internet]. Neurocomputing. 2015 ; 160 108-119.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.10.085
    • Vancouver

      Garcia LPF, Carvalho ACP de LF de, Lorena AC. Effect of label noise in the complexity of classification problems [Internet]. Neurocomputing. 2015 ; 160 108-119.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.10.085
  • Source: Neurocomputing. Unidade: IFSC

    Subjects: NEUROCIÊNCIAS (SISTEMAS;PESQUISA), BIOFÍSICA, PROCESSAMENTO DE SINAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATIAS, Paulo e SLAETS, Jan Frans Willem e PINTO, Reynaldo Daniel. Individual discrimination of freely swimming pulse-type electric fish from electrode array recordings. Neurocomputing, v. 153, p. 191-198, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.11.037. Acesso em: 12 nov. 2025.
    • APA

      Matias, P., Slaets, J. F. W., & Pinto, R. D. (2015). Individual discrimination of freely swimming pulse-type electric fish from electrode array recordings. Neurocomputing, 153, 191-198. doi:10.1016/j.neucom.2014.11.037
    • NLM

      Matias P, Slaets JFW, Pinto RD. Individual discrimination of freely swimming pulse-type electric fish from electrode array recordings [Internet]. Neurocomputing. 2015 ; 153 191-198.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.11.037
    • Vancouver

      Matias P, Slaets JFW, Pinto RD. Individual discrimination of freely swimming pulse-type electric fish from electrode array recordings [Internet]. Neurocomputing. 2015 ; 153 191-198.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.11.037
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: COMPUTAÇÃO GRÁFICA, PROCESSAMENTO DE IMAGENS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FADEL, Samuel G et al. LoCH: a neighborhood-based multidimensional projection technique for high-dimensional sparse spaces. Neurocomputing, v. fe 2015, p. 546-556, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.07.071. Acesso em: 12 nov. 2025.
    • APA

      Fadel, S. G., Fatore, F. M., Duarte, F. S. L. G., & Paulovich, F. V. (2015). LoCH: a neighborhood-based multidimensional projection technique for high-dimensional sparse spaces. Neurocomputing, fe 2015, 546-556. doi:10.1016/j.neucom.2014.07.071
    • NLM

      Fadel SG, Fatore FM, Duarte FSLG, Paulovich FV. LoCH: a neighborhood-based multidimensional projection technique for high-dimensional sparse spaces [Internet]. Neurocomputing. 2015 ; fe 2015 546-556.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.07.071
    • Vancouver

      Fadel SG, Fatore FM, Duarte FSLG, Paulovich FV. LoCH: a neighborhood-based multidimensional projection technique for high-dimensional sparse spaces [Internet]. Neurocomputing. 2015 ; fe 2015 546-556.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.07.071
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: COMPUTAÇÃO GRÁFICA, PROCESSAMENTO DE IMAGENS, GEOMETRIA COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAGLIOSA, Paulo et al. Projection inspector: assessment and synthesis of multidimensional projections. Neurocomputing, v. fe 2015, p. 599-610, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.07.072. Acesso em: 12 nov. 2025.
    • APA

      Pagliosa, P., Paulovich, F. V., Minghim, R., Levkowitz, H., & Nonato, L. G. (2015). Projection inspector: assessment and synthesis of multidimensional projections. Neurocomputing, fe 2015, 599-610. doi:10.1016/j.neucom.2014.07.072
    • NLM

      Pagliosa P, Paulovich FV, Minghim R, Levkowitz H, Nonato LG. Projection inspector: assessment and synthesis of multidimensional projections [Internet]. Neurocomputing. 2015 ; fe 2015 599-610.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.07.072
    • Vancouver

      Pagliosa P, Paulovich FV, Minghim R, Levkowitz H, Nonato LG. Projection inspector: assessment and synthesis of multidimensional projections [Internet]. Neurocomputing. 2015 ; fe 2015 599-610.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.07.072
  • Source: Neurocomputing. Unidade: EESC

    Subjects: DISTRIBUIÇÃO DE ENERGIA ELÉTRICA, SISTEMAS MULTIAGENTES, REDES NEURAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SARAIVA, Filipe de Oliveira e BERNARDES, Wellington Maycon Santos e ASADA, Eduardo Nobuhiro. A framework for classification of non-linear loads in smart grids using artificial neural networks and multi-agent systems. Neurocomputing, v. 170, p. 328-338, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2015.02.090. Acesso em: 12 nov. 2025.
    • APA

      Saraiva, F. de O., Bernardes, W. M. S., & Asada, E. N. (2015). A framework for classification of non-linear loads in smart grids using artificial neural networks and multi-agent systems. Neurocomputing, 170, 328-338. doi:10.1016/j.neucom.2015.02.090
    • NLM

      Saraiva F de O, Bernardes WMS, Asada EN. A framework for classification of non-linear loads in smart grids using artificial neural networks and multi-agent systems [Internet]. Neurocomputing. 2015 ; 170 328-338.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2015.02.090
    • Vancouver

      Saraiva F de O, Bernardes WMS, Asada EN. A framework for classification of non-linear loads in smart grids using artificial neural networks and multi-agent systems [Internet]. Neurocomputing. 2015 ; 170 328-338.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2015.02.090
  • Source: Neurocomputing. Unidade: IFSC

    Subjects: TEXTURA (ANÁLISE), REDES COMPLEXAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Wesley Nunes e MACHADO, Bruno Brandoli e BRUNO, Odemir Martinez. A complex network approach for dynamic texture recognition. Neurocomputing, v. 153, p. 211-220, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.11.034. Acesso em: 12 nov. 2025.
    • APA

      Gonçalves, W. N., Machado, B. B., & Bruno, O. M. (2015). A complex network approach for dynamic texture recognition. Neurocomputing, 153, 211-220. doi:10.1016/j.neucom.2014.11.034
    • NLM

      Gonçalves WN, Machado BB, Bruno OM. A complex network approach for dynamic texture recognition [Internet]. Neurocomputing. 2015 ; 153 211-220.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.11.034
    • Vancouver

      Gonçalves WN, Machado BB, Bruno OM. A complex network approach for dynamic texture recognition [Internet]. Neurocomputing. 2015 ; 153 211-220.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.11.034
  • Source: Neurocomputing. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NALDI, M. C e CAMPELLO, Ricardo José Gabrielli Barreto. Comparison of distributed evolutionary k-means clustering algorithms. Neurocomputing, v. 163, p. 78-93, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.07.083. Acesso em: 12 nov. 2025.
    • APA

      Naldi, M. C., & Campello, R. J. G. B. (2015). Comparison of distributed evolutionary k-means clustering algorithms. Neurocomputing, 163, 78-93. doi:10.1016/j.neucom.2014.07.083
    • NLM

      Naldi MC, Campello RJGB. Comparison of distributed evolutionary k-means clustering algorithms [Internet]. Neurocomputing. 2015 ; 163 78-93.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.07.083
    • Vancouver

      Naldi MC, Campello RJGB. Comparison of distributed evolutionary k-means clustering algorithms [Internet]. Neurocomputing. 2015 ; 163 78-93.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.07.083
  • Source: Neurocomputing. Unidade: IFSC

    Subjects: NEUROCIÊNCIAS (SISTEMAS;PESQUISA), ESTIMULAÇÃO VISUAL (REGENERAÇÃO), TEMPO-REAL (CONTROLE)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Núbia Rosa da et al. Improved texture image classification through the use of a corrosion-inspired cellular automaton. Neurocomputing, v. 149, p. 1560-1572, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.08.036. Acesso em: 12 nov. 2025.
    • APA

      Silva, N. R. da, Van der Weeën, P., Baets, B. D., & Bruno, O. M. (2015). Improved texture image classification through the use of a corrosion-inspired cellular automaton. Neurocomputing, 149, 1560-1572. doi:10.1016/j.neucom.2014.08.036
    • NLM

      Silva NR da, Van der Weeën P, Baets BD, Bruno OM. Improved texture image classification through the use of a corrosion-inspired cellular automaton [Internet]. Neurocomputing. 2015 ; 149 1560-1572.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.08.036
    • Vancouver

      Silva NR da, Van der Weeën P, Baets BD, Bruno OM. Improved texture image classification through the use of a corrosion-inspired cellular automaton [Internet]. Neurocomputing. 2015 ; 149 1560-1572.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.08.036
  • Source: Neurocomputing. Unidade: FFCLRP

    Subjects: INTELIGÊNCIA ARTIFICIAL, COMPUTAÇÃO GRÁFICA, PROCESSAMENTO DE IMAGENS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BREVE, Fabricio A e LIANG, Zhao e QUILES, Marcos G. Particle competition and cooperation for semi-supervised learning with label noise. Neurocomputing, v. 160, p. 63-72, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.08.082. Acesso em: 12 nov. 2025.
    • APA

      Breve, F. A., Liang, Z., & Quiles, M. G. (2015). Particle competition and cooperation for semi-supervised learning with label noise. Neurocomputing, 160, 63-72. doi:10.1016/j.neucom.2014.08.082
    • NLM

      Breve FA, Liang Z, Quiles MG. Particle competition and cooperation for semi-supervised learning with label noise [Internet]. Neurocomputing. 2015 ; 160 63-72.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.08.082
    • Vancouver

      Breve FA, Liang Z, Quiles MG. Particle competition and cooperation for semi-supervised learning with label noise [Internet]. Neurocomputing. 2015 ; 160 63-72.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.08.082
  • Source: Neurocomputing. Conference titles: International Conference on Hybrid Artificial Intelligent Systems - HAIS. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUINTIÁN, Héctor et al. Special issue HAIS 2012 [Editorial]: recent advancements in hybrid artificial intelligence systems and its application to real-world problems. Neurocomputing. Amsterdam: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.neucom.2015.02.077. Acesso em: 12 nov. 2025. , 2015
    • APA

      Quintián, H., Corchado, E., Abraham, A., Carvalho, A. C. P. de L. F. de, Wozniak, M., Snásel, V., & Sung-Bae, C. (2015). Special issue HAIS 2012 [Editorial]: recent advancements in hybrid artificial intelligence systems and its application to real-world problems. Neurocomputing. Amsterdam: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. doi:10.1016/j.neucom.2015.02.077
    • NLM

      Quintián H, Corchado E, Abraham A, Carvalho ACP de LF de, Wozniak M, Snásel V, Sung-Bae C. Special issue HAIS 2012 [Editorial]: recent advancements in hybrid artificial intelligence systems and its application to real-world problems [Internet]. Neurocomputing. 2015 ; 163 1-2.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2015.02.077
    • Vancouver

      Quintián H, Corchado E, Abraham A, Carvalho ACP de LF de, Wozniak M, Snásel V, Sung-Bae C. Special issue HAIS 2012 [Editorial]: recent advancements in hybrid artificial intelligence systems and its application to real-world problems [Internet]. Neurocomputing. 2015 ; 163 1-2.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2015.02.077
  • Source: Neurocomputing. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAGA, Igor e MONARD, Maria Carolina. Improving the kernel regularized least squares method for small-sample regression. Neurocomputing, v. 163, p. 106-114, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.12.097. Acesso em: 12 nov. 2025.
    • APA

      Braga, I., & Monard, M. C. (2015). Improving the kernel regularized least squares method for small-sample regression. Neurocomputing, 163, 106-114. doi:10.1016/j.neucom.2014.12.097
    • NLM

      Braga I, Monard MC. Improving the kernel regularized least squares method for small-sample regression [Internet]. Neurocomputing. 2015 ; 163 106-114.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.12.097
    • Vancouver

      Braga I, Monard MC. Improving the kernel regularized least squares method for small-sample regression [Internet]. Neurocomputing. 2015 ; 163 106-114.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.12.097
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, COMPUTAÇÃO GRÁFICA, PROCESSAMENTO DE IMAGENS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTTA, Robson et al. Graph-based measures to assist user assessment of multidimensional projections. Neurocomputing, v. fe 2015, p. 583-598, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.09.063. Acesso em: 12 nov. 2025.
    • APA

      Motta, R., Minghim, R., Lopes, A. de A., & Oliveira, M. C. F. de. (2015). Graph-based measures to assist user assessment of multidimensional projections. Neurocomputing, fe 2015, 583-598. doi:10.1016/j.neucom.2014.09.063
    • NLM

      Motta R, Minghim R, Lopes A de A, Oliveira MCF de. Graph-based measures to assist user assessment of multidimensional projections [Internet]. Neurocomputing. 2015 ; fe 2015 583-598.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.09.063
    • Vancouver

      Motta R, Minghim R, Lopes A de A, Oliveira MCF de. Graph-based measures to assist user assessment of multidimensional projections [Internet]. Neurocomputing. 2015 ; fe 2015 583-598.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.09.063
  • Source: Neurocomputing. Unidades: EESC, ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, PROCESSAMENTO DE SINAIS, EXPRESSÃO GÊNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESPEZUA, Soledad et al. A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets. Neurocomputing, v. fe 2015, p. 767-776, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2014.07.057. Acesso em: 12 nov. 2025.
    • APA

      Espezua, S., Villanueva, E., Maciel, C. D., & Carvalho, A. C. P. de L. F. de. (2015). A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets. Neurocomputing, fe 2015, 767-776. doi:10.1016/j.neucom.2014.07.057
    • NLM

      Espezua S, Villanueva E, Maciel CD, Carvalho ACP de LF de. A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets [Internet]. Neurocomputing. 2015 ; fe 2015 767-776.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.07.057
    • Vancouver

      Espezua S, Villanueva E, Maciel CD, Carvalho ACP de LF de. A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets [Internet]. Neurocomputing. 2015 ; fe 2015 767-776.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.neucom.2014.07.057

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025