Filtros : "Mathematical Programming" "Chile" Limpar

Filtros



Refine with date range


  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO NÃO LINEAR, PESQUISA OPERACIONAL

    Disponível em 2026-06-17Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. A minimal face constant rank constraint qualification for reducible conic programming. Mathematical Programming, p. 1-27, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10107-025-02237-w. Acesso em: 11 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., & Ramírez, H. (2025). A minimal face constant rank constraint qualification for reducible conic programming. Mathematical Programming, 1-27. doi:10.1007/s10107-025-02237-w
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez H. A minimal face constant rank constraint qualification for reducible conic programming [Internet]. Mathematical Programming. 2025 ; 1-27.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-025-02237-w
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez H. A minimal face constant rank constraint qualification for reducible conic programming [Internet]. Mathematical Programming. 2025 ; 1-27.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-025-02237-w
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Weak notions of nondegeneracy in nonlinear semidefinite programming. Mathematical Programming, v. 205, n. 1-2, p. 1-32, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10107-023-01970-4. Acesso em: 11 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L. M., & Ramírez, H. (2024). Weak notions of nondegeneracy in nonlinear semidefinite programming. Mathematical Programming, 205( 1-2), 1-32. doi:10.1007/s10107-023-01970-4
    • NLM

      Andreani R, Haeser G, Mito LM, Ramírez H. Weak notions of nondegeneracy in nonlinear semidefinite programming [Internet]. Mathematical Programming. 2024 ; 205( 1-2): 1-32.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-023-01970-4
    • Vancouver

      Andreani R, Haeser G, Mito LM, Ramírez H. Weak notions of nondegeneracy in nonlinear semidefinite programming [Internet]. Mathematical Programming. 2024 ; 205( 1-2): 1-32.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-023-01970-4
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition. Mathematical Programming, v. 202, p. 473-513, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10107-023-01942-8. Acesso em: 11 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, H., & Silveira, T. P. da. (2023). First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition. Mathematical Programming, 202, 473-513. doi:10.1007/s10107-023-01942-8
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez H, Silveira TP da. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition [Internet]. Mathematical Programming. 2023 ; 202 473-513.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-023-01942-8
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez H, Silveira TP da. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition [Internet]. Mathematical Programming. 2023 ; 202 473-513.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-023-01942-8
  • Source: Mathematical Programming. Unidade: IME

    Assunto: OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA, J. R. e FERNANDES, Cristina Gomes e WAKABAYASHI, Yoshiko. Approximating a class of combinatorial problems with rational objective function. Mathematical Programming, v. 124, n. 1-2, p. 255-269, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10107-010-0364-8. Acesso em: 11 nov. 2025.
    • APA

      Correa, J. R., Fernandes, C. G., & Wakabayashi, Y. (2010). Approximating a class of combinatorial problems with rational objective function. Mathematical Programming, 124( 1-2), 255-269. doi:10.1007/s10107-010-0364-8
    • NLM

      Correa JR, Fernandes CG, Wakabayashi Y. Approximating a class of combinatorial problems with rational objective function [Internet]. Mathematical Programming. 2010 ; 124( 1-2): 255-269.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-010-0364-8
    • Vancouver

      Correa JR, Fernandes CG, Wakabayashi Y. Approximating a class of combinatorial problems with rational objective function [Internet]. Mathematical Programming. 2010 ; 124( 1-2): 255-269.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-010-0364-8

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025