Filtros : "Linear Algebra and its Applications" Removido: "Financiado pela FAPESP" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, GRUPOS ALGÉBRICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Helen Samara dos e YASUMURA, Felipe Yukihide. Group gradings on finite-dimensional incidence algebras. II. Linear Algebra and its Applications, v. 726, p. 273-290, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2025.07.027. Acesso em: 05 dez. 2025.
    • APA

      Santos, H. S. dos, & Yasumura, F. Y. (2025). Group gradings on finite-dimensional incidence algebras. II. Linear Algebra and its Applications, 726, 273-290. doi:10.1016/j.laa.2025.07.027
    • NLM

      Santos HS dos, Yasumura FY. Group gradings on finite-dimensional incidence algebras. II [Internet]. Linear Algebra and its Applications. 2025 ; 726 273-290.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2025.07.027
    • Vancouver

      Santos HS dos, Yasumura FY. Group gradings on finite-dimensional incidence algebras. II [Internet]. Linear Algebra and its Applications. 2025 ; 726 273-290.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2025.07.027
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA EXTERIOR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIDELES, Claudemir et al. A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings. Linear Algebra and its Applications, v. 680, p. 93-107, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2023.10.002. Acesso em: 05 dez. 2025.
    • APA

      Fideles, C., Gomes, A. B., Grichkov, A., & Guimarães, A. (2024). A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings. Linear Algebra and its Applications, 680, 93-107. doi:10.1016/j.laa.2023.10.002
    • NLM

      Fideles C, Gomes AB, Grichkov A, Guimarães A. A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings [Internet]. Linear Algebra and its Applications. 2024 ; 680 93-107.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2023.10.002
    • Vancouver

      Fideles C, Gomes AB, Grichkov A, Guimarães A. A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings [Internet]. Linear Algebra and its Applications. 2024 ; 680 93-107.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2023.10.002
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMIJO, Nicolas F. e BELLO-CRUZ, Yunier e HAESER, Gabriel. On the convergence of iterative schemes for solving a piecewise linear system of equations. Linear Algebra and its Applications, v. 665, p. 291-314, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2023.02.001. Acesso em: 05 dez. 2025.
    • APA

      Armijo, N. F., Bello-Cruz, Y., & Haeser, G. (2023). On the convergence of iterative schemes for solving a piecewise linear system of equations. Linear Algebra and its Applications, 665, 291-314. doi:10.1016/j.laa.2023.02.001
    • NLM

      Armijo NF, Bello-Cruz Y, Haeser G. On the convergence of iterative schemes for solving a piecewise linear system of equations [Internet]. Linear Algebra and its Applications. 2023 ; 665 291-314.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2023.02.001
    • Vancouver

      Armijo NF, Bello-Cruz Y, Haeser G. On the convergence of iterative schemes for solving a piecewise linear system of equations [Internet]. Linear Algebra and its Applications. 2023 ; 665 291-314.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2023.02.001
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: SUPERÁLGEBRAS DE LIE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YASUMURA, Felipe Yukihide. Universal enveloping of a graded Lie algebra. Linear Algebra and its Applications, v. 674, p. 208-229, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2023.05.028. Acesso em: 05 dez. 2025.
    • APA

      Yasumura, F. Y. (2023). Universal enveloping of a graded Lie algebra. Linear Algebra and its Applications, 674, 208-229. doi:10.1016/j.laa.2023.05.028
    • NLM

      Yasumura FY. Universal enveloping of a graded Lie algebra [Internet]. Linear Algebra and its Applications. 2023 ; 674 208-229.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2023.05.028
    • Vancouver

      Yasumura FY. Universal enveloping of a graded Lie algebra [Internet]. Linear Algebra and its Applications. 2023 ; 674 208-229.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2023.05.028
  • Source: Linear Algebra and its Applications. Unidade: IME

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEBIANO, Natalia e BREŠAR, Matej e FUTORNY, Vyacheslav. Preface to the special issue dedicated to Vladimir Sergeichuk on the occasion of his 70th birthday. [Editorial]. Linear Algebra and its Applications. Philadelphia: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.laa.2019.02.007. Acesso em: 05 dez. 2025. , 2019
    • APA

      Bebiano, N., Brešar, M., & Futorny, V. (2019). Preface to the special issue dedicated to Vladimir Sergeichuk on the occasion of his 70th birthday. [Editorial]. Linear Algebra and its Applications. Philadelphia: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.laa.2019.02.007
    • NLM

      Bebiano N, Brešar M, Futorny V. Preface to the special issue dedicated to Vladimir Sergeichuk on the occasion of his 70th birthday. [Editorial] [Internet]. Linear Algebra and its Applications. 2019 ; 568 1-9.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2019.02.007
    • Vancouver

      Bebiano N, Brešar M, Futorny V. Preface to the special issue dedicated to Vladimir Sergeichuk on the occasion of his 70th birthday. [Editorial] [Internet]. Linear Algebra and its Applications. 2019 ; 568 1-9.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2019.02.007
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TRANSFORMAÇÕES LINEARES, TRANSFORMAÇÕES SEMILINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VANEGAS, Elkin Oveimar Quintero e FERNÁNDEZ, Juan Carlos Gutiérrez. Nilpotent linear spaces and Albert's Problem. Linear Algebra and its Applications, v. 518, p. 57-78, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.12.026. Acesso em: 05 dez. 2025.
    • APA

      Vanegas, E. O. Q., & Fernández, J. C. G. (2017). Nilpotent linear spaces and Albert's Problem. Linear Algebra and its Applications, 518, 57-78. doi:10.1016/j.laa.2016.12.026
    • NLM

      Vanegas EOQ, Fernández JCG. Nilpotent linear spaces and Albert's Problem [Internet]. Linear Algebra and its Applications. 2017 ; 518 57-78.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2016.12.026
    • Vancouver

      Vanegas EOQ, Fernández JCG. Nilpotent linear spaces and Albert's Problem [Internet]. Linear Algebra and its Applications. 2017 ; 518 57-78.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2016.12.026
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, v. 519, p. 278-295, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.01.006. Acesso em: 05 dez. 2025.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2017). Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, 519, 278-295. doi:10.1016/j.laa.2017.01.006
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. et al. Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, v. 527, p. 294-302, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.04.011. Acesso em: 05 dez. 2025.
    • APA

      Dmytryshyn, A. R., Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2017). Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, 527, 294-302. doi:10.1016/j.laa.2017.04.011
    • NLM

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
    • Vancouver

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, MATRIZES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KLYMCHUK, Tatiana e SERGEICHUK, Vladimir V. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, v. 510, p. 246-258, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.08.022. Acesso em: 05 dez. 2025.
    • APA

      Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2016). Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, 510, 246-258. doi:10.1016/j.laa.2016.08.022
    • NLM

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
    • Vancouver

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. et al. Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence. Linear Algebra and its Applications, v. 469, p. 305-334, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2014.11.004. Acesso em: 05 dez. 2025.
    • APA

      Dmytryshyn, A. R., Futorny, V., Kågström, B., Klimenko, L., & Sergeichuk, V. V. (2015). Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence. Linear Algebra and its Applications, 469, 305-334. doi:10.1016/j.laa.2014.11.004
    • NLM

      Dmytryshyn AR, Futorny V, Kågström B, Klimenko L, Sergeichuk VV. Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence [Internet]. Linear Algebra and its Applications. 2015 ; 469 305-334.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.11.004
    • Vancouver

      Dmytryshyn AR, Futorny V, Kågström B, Klimenko L, Sergeichuk VV. Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence [Internet]. Linear Algebra and its Applications. 2015 ; 469 305-334.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.11.004
  • Source: Linear Algebra and its Applications. Unidade: FZEA

    Subjects: INTERPOLAÇÃO, MÉTODO DOS ELEMENTOS FINITOS, ANÁLISE NUMÉRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AYALA BRAVO, Cedric Marcelo Augusto et al. Definition of a P-interpolating space of hierarchical bases of finite elements on the pyramid. Linear Algebra and its Applications, v. No 2014, p. 174-204, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2014.07.033. Acesso em: 05 dez. 2025.
    • APA

      Ayala Bravo, C. M. A., Pavanello, R., Devloo, P. R. B., & Calle, J. L. D. (2014). Definition of a P-interpolating space of hierarchical bases of finite elements on the pyramid. Linear Algebra and its Applications, No 2014, 174-204. doi:10.1016/j.laa.2014.07.033
    • NLM

      Ayala Bravo CMA, Pavanello R, Devloo PRB, Calle JLD. Definition of a P-interpolating space of hierarchical bases of finite elements on the pyramid [Internet]. Linear Algebra and its Applications. 2014 ; No 2014 174-204.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.07.033
    • Vancouver

      Ayala Bravo CMA, Pavanello R, Devloo PRB, Calle JLD. Definition of a P-interpolating space of hierarchical bases of finite elements on the pyramid [Internet]. Linear Algebra and its Applications. 2014 ; No 2014 174-204.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.07.033
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: MÉTODOS NUMÉRICOS DE ÁLGEBRA LINEAR, MATRIZES, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e RYBALKINA, Tetiana e SERGEICHUK, Vladimir V. Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings. Linear Algebra and its Applications, v. 450, p. 121-137, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2014.03.002. Acesso em: 05 dez. 2025.
    • APA

      Futorny, V., Rybalkina, T., & Sergeichuk, V. V. (2014). Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings. Linear Algebra and its Applications, 450, 121-137. doi:10.1016/j.laa.2014.03.002
    • NLM

      Futorny V, Rybalkina T, Sergeichuk VV. Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings [Internet]. Linear Algebra and its Applications. 2014 ; 450 121-137.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.03.002
    • Vancouver

      Futorny V, Rybalkina T, Sergeichuk VV. Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings [Internet]. Linear Algebra and its Applications. 2014 ; 450 121-137.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.03.002
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, OPERADORES LINEARES, ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. e SERGEICHUK, Vladimir V. Miniversal deformations of matrices under *congruence and reducing transformations. Linear Algebra and its Applications, v. 446, p. 388-420, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2014.01.016. Acesso em: 05 dez. 2025.
    • APA

      Dmytryshyn, A. R., & Sergeichuk, V. V. (2014). Miniversal deformations of matrices under *congruence and reducing transformations. Linear Algebra and its Applications, 446, 388-420. doi:10.1016/j.laa.2014.01.016
    • NLM

      Dmytryshyn AR, Sergeichuk VV. Miniversal deformations of matrices under *congruence and reducing transformations [Internet]. Linear Algebra and its Applications. 2014 ; 446 388-420.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.01.016
    • Vancouver

      Dmytryshyn AR, Sergeichuk VV. Miniversal deformations of matrices under *congruence and reducing transformations [Internet]. Linear Algebra and its Applications. 2014 ; 446 388-420.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.01.016
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Debora Duarte de et al. Cycles of linear and semilinear mappings. Linear Algebra and its Applications, v. 438, n. 8, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2012.12.023. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, D. D. de, Futorny, V., Klimchuk, T., kovalenko, D., & Sergeichuk, V. (2013). Cycles of linear and semilinear mappings. Linear Algebra and its Applications, 438( 8). doi:10.1016/j.laa.2012.12.023
    • NLM

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023
    • Vancouver

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENTZEL, Irvin Roy e PERESI, Luiz Antonio. Special identities for Bol algebras. Linear Algebra and its Applications, v. 436, n. 7, p. 2315-2330, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.09.021. Acesso em: 05 dez. 2025.
    • APA

      Hentzel, I. R., & Peresi, L. A. (2012). Special identities for Bol algebras. Linear Algebra and its Applications, 436( 7), 2315-2330. doi:10.1016/j.laa.2011.09.021
    • NLM

      Hentzel IR, Peresi LA. Special identities for Bol algebras [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2315-2330.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.09.021
    • Vancouver

      Hentzel IR, Peresi LA. Special identities for Bol algebras [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2315-2330.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.09.021
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: MATRIZES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. e FUTORNY, Vyacheslav e SERGEICHUK, Vladimir V. Miniversal deformations of matrices of bilinear forms. Linear Algebra and its Applications, v. 436, n. 7, p. 2670-2700, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.11.010. Acesso em: 05 dez. 2025.
    • APA

      Dmytryshyn, A. R., Futorny, V., & Sergeichuk, V. V. (2012). Miniversal deformations of matrices of bilinear forms. Linear Algebra and its Applications, 436( 7), 2670-2700. doi:10.1016/j.laa.2011.11.010
    • NLM

      Dmytryshyn AR, Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2670-2700.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.11.010
    • Vancouver

      Dmytryshyn AR, Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2670-2700.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.11.010
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: MATRIZES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARENICK, Douglas et al. A criterion for unitary similarity of upper triangular matrices in general position. Linear Algebra and its Applications, v. 435, n. 6, p. 1356-1369, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.03.021. Acesso em: 05 dez. 2025.
    • APA

      Farenick, D., Futorny, V., Gerasimovsky, V. I., Sergeichuk, V. V., & Shvai, N. (2011). A criterion for unitary similarity of upper triangular matrices in general position. Linear Algebra and its Applications, 435( 6), 1356-1369. doi:10.1016/j.laa.2011.03.021
    • NLM

      Farenick D, Futorny V, Gerasimovsky VI, Sergeichuk VV, Shvai N. A criterion for unitary similarity of upper triangular matrices in general position [Internet]. Linear Algebra and its Applications. 2011 ; 435( 6): 1356-1369.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.03.021
    • Vancouver

      Farenick D, Futorny V, Gerasimovsky VI, Sergeichuk VV, Shvai N. A criterion for unitary similarity of upper triangular matrices in general position [Internet]. Linear Algebra and its Applications. 2011 ; 435( 6): 1356-1369.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.03.021
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BREMNER, Murray R. e PERESI, Luiz Antonio. An application of lattice basis reduction to polynomial identities for algebraic structures. Linear Algebra and its Applications, v. 430, n. 2-3, p. 642-659, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2008.09.003. Acesso em: 05 dez. 2025.
    • APA

      Bremner, M. R., & Peresi, L. A. (2009). An application of lattice basis reduction to polynomial identities for algebraic structures. Linear Algebra and its Applications, 430( 2-3), 642-659. doi:10.1016/j.laa.2008.09.003
    • NLM

      Bremner MR, Peresi LA. An application of lattice basis reduction to polynomial identities for algebraic structures [Internet]. Linear Algebra and its Applications. 2009 ; 430( 2-3): 642-659.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2008.09.003
    • Vancouver

      Bremner MR, Peresi LA. An application of lattice basis reduction to polynomial identities for algebraic structures [Internet]. Linear Algebra and its Applications. 2009 ; 430( 2-3): 642-659.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2008.09.003
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BREMNER, Murray R. e PERESI, Luíz Antônio. Ternary analogues of Lie and Malcev algebras. Linear Algebra and its Applications, v. 414, n. 1, p. 1-18, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2005.09.004. Acesso em: 05 dez. 2025.
    • APA

      Bremner, M. R., & Peresi, L. A. (2006). Ternary analogues of Lie and Malcev algebras. Linear Algebra and its Applications, 414( 1), 1-18. doi:10.1016/j.laa.2005.09.004
    • NLM

      Bremner MR, Peresi LA. Ternary analogues of Lie and Malcev algebras [Internet]. Linear Algebra and its Applications. 2006 ; 414( 1): 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2005.09.004
    • Vancouver

      Bremner MR, Peresi LA. Ternary analogues of Lie and Malcev algebras [Internet]. Linear Algebra and its Applications. 2006 ; 414( 1): 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2005.09.004
  • Source: Linear Algebra and its Applications. Unidade: EP

    Assunto: CONTROLE ÓTIMO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAYED, Ali Hussein e NASCIMENTO, Vítor Heloiz e CHANDRASEKARAN, S. Estimation and control with bounded data uncertainties. Linear Algebra and its Applications, v. 284, p. 259-306, 1998Tradução . . Disponível em: https://doi.org/10.1016/s0024-3795(98)10129-5. Acesso em: 05 dez. 2025.
    • APA

      Sayed, A. H., Nascimento, V. H., & Chandrasekaran, S. (1998). Estimation and control with bounded data uncertainties. Linear Algebra and its Applications, 284, 259-306. doi:10.1016/s0024-3795(98)10129-5
    • NLM

      Sayed AH, Nascimento VH, Chandrasekaran S. Estimation and control with bounded data uncertainties [Internet]. Linear Algebra and its Applications. 1998 ;284 259-306.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/s0024-3795(98)10129-5
    • Vancouver

      Sayed AH, Nascimento VH, Chandrasekaran S. Estimation and control with bounded data uncertainties [Internet]. Linear Algebra and its Applications. 1998 ;284 259-306.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/s0024-3795(98)10129-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025