Filtros : "Linear Algebra and its Applications" "MATRIZES" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, MATRIZES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KLYMCHUK, Tatiana e SERGEICHUK, Vladimir V. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, v. 510, p. 246-258, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.08.022. Acesso em: 05 dez. 2025.
    • APA

      Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2016). Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, 510, 246-258. doi:10.1016/j.laa.2016.08.022
    • NLM

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
    • Vancouver

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: MÉTODOS NUMÉRICOS DE ÁLGEBRA LINEAR, MATRIZES, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e RYBALKINA, Tetiana e SERGEICHUK, Vladimir V. Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings. Linear Algebra and its Applications, v. 450, p. 121-137, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2014.03.002. Acesso em: 05 dez. 2025.
    • APA

      Futorny, V., Rybalkina, T., & Sergeichuk, V. V. (2014). Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings. Linear Algebra and its Applications, 450, 121-137. doi:10.1016/j.laa.2014.03.002
    • NLM

      Futorny V, Rybalkina T, Sergeichuk VV. Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings [Internet]. Linear Algebra and its Applications. 2014 ; 450 121-137.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.03.002
    • Vancouver

      Futorny V, Rybalkina T, Sergeichuk VV. Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings [Internet]. Linear Algebra and its Applications. 2014 ; 450 121-137.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.03.002
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: MATRIZES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. e FUTORNY, Vyacheslav e SERGEICHUK, Vladimir V. Miniversal deformations of matrices of bilinear forms. Linear Algebra and its Applications, v. 436, n. 7, p. 2670-2700, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.11.010. Acesso em: 05 dez. 2025.
    • APA

      Dmytryshyn, A. R., Futorny, V., & Sergeichuk, V. V. (2012). Miniversal deformations of matrices of bilinear forms. Linear Algebra and its Applications, 436( 7), 2670-2700. doi:10.1016/j.laa.2011.11.010
    • NLM

      Dmytryshyn AR, Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2670-2700.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.11.010
    • Vancouver

      Dmytryshyn AR, Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2670-2700.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.11.010
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: MATRIZES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARENICK, Douglas et al. A criterion for unitary similarity of upper triangular matrices in general position. Linear Algebra and its Applications, v. 435, n. 6, p. 1356-1369, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.03.021. Acesso em: 05 dez. 2025.
    • APA

      Farenick, D., Futorny, V., Gerasimovsky, V. I., Sergeichuk, V. V., & Shvai, N. (2011). A criterion for unitary similarity of upper triangular matrices in general position. Linear Algebra and its Applications, 435( 6), 1356-1369. doi:10.1016/j.laa.2011.03.021
    • NLM

      Farenick D, Futorny V, Gerasimovsky VI, Sergeichuk VV, Shvai N. A criterion for unitary similarity of upper triangular matrices in general position [Internet]. Linear Algebra and its Applications. 2011 ; 435( 6): 1356-1369.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.03.021
    • Vancouver

      Farenick D, Futorny V, Gerasimovsky VI, Sergeichuk VV, Shvai N. A criterion for unitary similarity of upper triangular matrices in general position [Internet]. Linear Algebra and its Applications. 2011 ; 435( 6): 1356-1369.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.03.021

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025