Filtros : "Linear Algebra and its Applications" "Indexado no MathSciNet" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: MÉTODOS NUMÉRICOS DE ÁLGEBRA LINEAR, MATRIZES, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e RYBALKINA, Tetiana e SERGEICHUK, Vladimir V. Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings. Linear Algebra and its Applications, v. 450, p. 121-137, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2014.03.002. Acesso em: 05 dez. 2025.
    • APA

      Futorny, V., Rybalkina, T., & Sergeichuk, V. V. (2014). Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings. Linear Algebra and its Applications, 450, 121-137. doi:10.1016/j.laa.2014.03.002
    • NLM

      Futorny V, Rybalkina T, Sergeichuk VV. Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings [Internet]. Linear Algebra and its Applications. 2014 ; 450 121-137.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.03.002
    • Vancouver

      Futorny V, Rybalkina T, Sergeichuk VV. Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings [Internet]. Linear Algebra and its Applications. 2014 ; 450 121-137.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.03.002
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, OPERADORES LINEARES, ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. e SERGEICHUK, Vladimir V. Miniversal deformations of matrices under *congruence and reducing transformations. Linear Algebra and its Applications, v. 446, p. 388-420, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2014.01.016. Acesso em: 05 dez. 2025.
    • APA

      Dmytryshyn, A. R., & Sergeichuk, V. V. (2014). Miniversal deformations of matrices under *congruence and reducing transformations. Linear Algebra and its Applications, 446, 388-420. doi:10.1016/j.laa.2014.01.016
    • NLM

      Dmytryshyn AR, Sergeichuk VV. Miniversal deformations of matrices under *congruence and reducing transformations [Internet]. Linear Algebra and its Applications. 2014 ; 446 388-420.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.01.016
    • Vancouver

      Dmytryshyn AR, Sergeichuk VV. Miniversal deformations of matrices under *congruence and reducing transformations [Internet]. Linear Algebra and its Applications. 2014 ; 446 388-420.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.01.016
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Debora Duarte de et al. Cycles of linear and semilinear mappings. Linear Algebra and its Applications, v. 438, n. 8, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2012.12.023. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, D. D. de, Futorny, V., Klimchuk, T., kovalenko, D., & Sergeichuk, V. (2013). Cycles of linear and semilinear mappings. Linear Algebra and its Applications, 438( 8). doi:10.1016/j.laa.2012.12.023
    • NLM

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023
    • Vancouver

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BREMNER, Murray R. e PERESI, Luiz Antonio. An application of lattice basis reduction to polynomial identities for algebraic structures. Linear Algebra and its Applications, v. 430, n. 2-3, p. 642-659, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2008.09.003. Acesso em: 05 dez. 2025.
    • APA

      Bremner, M. R., & Peresi, L. A. (2009). An application of lattice basis reduction to polynomial identities for algebraic structures. Linear Algebra and its Applications, 430( 2-3), 642-659. doi:10.1016/j.laa.2008.09.003
    • NLM

      Bremner MR, Peresi LA. An application of lattice basis reduction to polynomial identities for algebraic structures [Internet]. Linear Algebra and its Applications. 2009 ; 430( 2-3): 642-659.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2008.09.003
    • Vancouver

      Bremner MR, Peresi LA. An application of lattice basis reduction to polynomial identities for algebraic structures [Internet]. Linear Algebra and its Applications. 2009 ; 430( 2-3): 642-659.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2008.09.003

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025