A robust methodology for comparing performances of clustering validity criteria (2008)
Source: Lecture Notes in Artificial Intelligence - LNAI. Conference titles: Brazilian Symposium on Artificial Intelligence - SBIA 2008. Unidade: ICMC
Assunto: INTELIGÊNCIA ARTIFICIAL
ABNT
VENDRAMIN, Lucas e CAMPELLO, Ricardo José Gabrielli Barreto e HRUSCHKA, Eduardo Raul. A robust methodology for comparing performances of clustering validity criteria. Lecture Notes in Artificial Intelligence - LNAI. Heidelberg: Springer-Verlag. Disponível em: https://doi.org/10.1007/978-3-540-88190-2_29. Acesso em: 28 nov. 2025. , 2008APA
Vendramin, L., Campello, R. J. G. B., & Hruschka, E. R. (2008). A robust methodology for comparing performances of clustering validity criteria. Lecture Notes in Artificial Intelligence - LNAI. Heidelberg: Springer-Verlag. doi:10.1007/978-3-540-88190-2_29NLM
Vendramin L, Campello RJGB, Hruschka ER. A robust methodology for comparing performances of clustering validity criteria [Internet]. Lecture Notes in Artificial Intelligence - LNAI. 2008 ; 5249 237-247.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/978-3-540-88190-2_29Vancouver
Vendramin L, Campello RJGB, Hruschka ER. A robust methodology for comparing performances of clustering validity criteria [Internet]. Lecture Notes in Artificial Intelligence - LNAI. 2008 ; 5249 237-247.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/978-3-540-88190-2_29
