Filtros : "Finite Fields and their Applications" "Indexado no Science Citation Index" Limpar

Filtros



Limitar por data


  • Fonte: Finite Fields and their Applications. Unidade: ICMC

    Assunto: CURVAS ALGÉBRICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKELIAN, Nazar e BORGES, Herivelto e SPEZIALI, Pietro. The Hurwitz curve over a finite field and its Weierstrass points for the morphism of lines. Finite Fields and their Applications, v. 73, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2021.101842. Acesso em: 17 nov. 2025.
    • APA

      Arakelian, N., Borges, H., & Speziali, P. (2021). The Hurwitz curve over a finite field and its Weierstrass points for the morphism of lines. Finite Fields and their Applications, 73, 1-19. doi:10.1016/j.ffa.2021.101842
    • NLM

      Arakelian N, Borges H, Speziali P. The Hurwitz curve over a finite field and its Weierstrass points for the morphism of lines [Internet]. Finite Fields and their Applications. 2021 ; 73 1-19.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.ffa.2021.101842
    • Vancouver

      Arakelian N, Borges H, Speziali P. The Hurwitz curve over a finite field and its Weierstrass points for the morphism of lines [Internet]. Finite Fields and their Applications. 2021 ; 73 1-19.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.ffa.2021.101842
  • Fonte: Finite Fields and their Applications. Unidade: ICMC

    Assuntos: CURVAS ALGÉBRICAS, TEORIA DE GALOIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Herivelto e FUKASAWA, Satoru. Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, v. 61, n. Ja 2020, p. 1-8, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2019.101579. Acesso em: 17 nov. 2025.
    • APA

      Borges, H., & Fukasawa, S. (2020). Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, 61( Ja 2020), 1-8. doi:10.1016/j.ffa.2019.101579
    • NLM

      Borges H, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.ffa.2019.101579
    • Vancouver

      Borges H, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.ffa.2019.101579
  • Fonte: Finite Fields and their Applications. Unidade: ICMC

    Assuntos: POLINÔMIOS, CORPOS FINITOS, MATRIZES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REIS, Lucas da Silva. On the existence and number of invariant polynomials. Finite Fields and their Applications, v. 61, n. Ja 2020, p. 1-13, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2019.101605. Acesso em: 17 nov. 2025.
    • APA

      Reis, L. da S. (2020). On the existence and number of invariant polynomials. Finite Fields and their Applications, 61( Ja 2020), 1-13. doi:10.1016/j.ffa.2019.101605
    • NLM

      Reis L da S. On the existence and number of invariant polynomials [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-13.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.ffa.2019.101605
    • Vancouver

      Reis L da S. On the existence and number of invariant polynomials [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-13.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.ffa.2019.101605
  • Fonte: Finite Fields and their Applications. Unidade: ICMC

    Assuntos: ÁLGEBRA, CURVAS ALGÉBRICAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Herivelto e SEPÚLVEDA, A e TIZZIOTTI, G. Weierstrass semigroup and automorphism group of the curves 'X IND. N,R'. Finite Fields and their Applications, v. No 2015, p. 121-132, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2015.07.004. Acesso em: 17 nov. 2025.
    • APA

      Borges, H., Sepúlveda, A., & Tizziotti, G. (2015). Weierstrass semigroup and automorphism group of the curves 'X IND. N,R'. Finite Fields and their Applications, No 2015, 121-132. doi:10.1016/j.ffa.2015.07.004
    • NLM

      Borges H, Sepúlveda A, Tizziotti G. Weierstrass semigroup and automorphism group of the curves 'X IND. N,R' [Internet]. Finite Fields and their Applications. 2015 ; No 2015 121-132.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.ffa.2015.07.004
    • Vancouver

      Borges H, Sepúlveda A, Tizziotti G. Weierstrass semigroup and automorphism group of the curves 'X IND. N,R' [Internet]. Finite Fields and their Applications. 2015 ; No 2015 121-132.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.ffa.2015.07.004

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025