Filtros : "Computer Methods in Applied Mechanics and Engineering" "Financiado pela FAPESP" Limpar

Filtros



Refine with date range


  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: MECÂNICA DA FRATURA, MÉTODO DOS ELEMENTOS DE CONTORNO, ESTRUTURAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Matheus e TREVELYAN, John e LEONEL, Edson Denner. An extended isogeometric boundary element formulation for three-dimensional linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, v. 423, p. 1-33, 2024Tradução . . Disponível em: https://dx.doi.org/10.1016/j.cma.2024.116872. Acesso em: 10 nov. 2025.
    • APA

      Rocha, M., Trevelyan, J., & Leonel, E. D. (2024). An extended isogeometric boundary element formulation for three-dimensional linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 423, 1-33. doi:10.1016/j.cma.2024.116872
    • NLM

      Rocha M, Trevelyan J, Leonel ED. An extended isogeometric boundary element formulation for three-dimensional linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2024 ; 423 1-33.[citado 2025 nov. 10 ] Available from: https://dx.doi.org/10.1016/j.cma.2024.116872
    • Vancouver

      Rocha M, Trevelyan J, Leonel ED. An extended isogeometric boundary element formulation for three-dimensional linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2024 ; 423 1-33.[citado 2025 nov. 10 ] Available from: https://dx.doi.org/10.1016/j.cma.2024.116872
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS FINITOS, ROBUSTEZ, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENTO, Murilo Eduardo Casteroba e PROENÇA, Sérgio Persival Baroncini e DUARTE, C. A. Well-conditioned and optimally convergent second-order Generalized/eXtended FEM formulations for linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, v. 394, p. 1-24, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2022.114917. Acesso em: 10 nov. 2025.
    • APA

      Bento, M. E. C., Proença, S. P. B., & Duarte, C. A. (2022). Well-conditioned and optimally convergent second-order Generalized/eXtended FEM formulations for linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 394, 1-24. doi:10.1016/j.cma.2022.114917
    • NLM

      Bento MEC, Proença SPB, Duarte CA. Well-conditioned and optimally convergent second-order Generalized/eXtended FEM formulations for linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 394 1-24.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2022.114917
    • Vancouver

      Bento MEC, Proença SPB, Duarte CA. Well-conditioned and optimally convergent second-order Generalized/eXtended FEM formulations for linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 394 1-24.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2022.114917
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: MECÂNICA DA FRATURA, MÉTODO DOS ELEMENTOS FINITOS, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROSA, Rosicley Júnio Rodrigues e CODA, Humberto Breves e SANCHES, Rodolfo André Kuche. Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, v. 392, p. 1-28, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2022.114622. Acesso em: 10 nov. 2025.
    • APA

      Rosa, R. J. R., Coda, H. B., & Sanches, R. A. K. (2022). Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 392, 1-28. doi:10.1016/j.cma.2022.114622
    • NLM

      Rosa RJR, Coda HB, Sanches RAK. Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 392 1-28.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2022.114622
    • Vancouver

      Rosa RJR, Coda HB, Sanches RAK. Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 392 1-28.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2022.114622
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: DINÂMICA DOS FLUÍDOS COMPUTACIONAL, MÉTODO DOS ELEMENTOS FINITOS, MÉTODOS DE DECOMPOSIÇÃO, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Jeferson Wilian Dossa et al. A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework. Computer Methods in Applied Mechanics and Engineering, v. 370, p. 1-30, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2020.113073. Acesso em: 10 nov. 2025.
    • APA

      Fernandes, J. W. D., Barbarulo, A., Dhia, H. B., & Sanches, R. A. K. (2020). A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework. Computer Methods in Applied Mechanics and Engineering, 370, 1-30. doi:10.1016/j.cma.2020.113073
    • NLM

      Fernandes JWD, Barbarulo A, Dhia HB, Sanches RAK. A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 370 1-30.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2020.113073
    • Vancouver

      Fernandes JWD, Barbarulo A, Dhia HB, Sanches RAK. A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 370 1-30.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2020.113073
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EP

    Subjects: TOPOLOGIA, TENSÃO DOS MATERIAIS, JUNTAS DE MOVIMENTAÇÃO, DEFORMAÇÃO E ESTRESSES

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EMMENDOERFER JUNIOR, Hélio e FANCELLO, Eduardo Alberto e SILVA, Emílio Carlos Nelli. Stress-constrained level set topology optimization for compliant mechanisms. Computer Methods in Applied Mechanics and Engineering, v. 362, p. 1-27, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2019.112777. Acesso em: 10 nov. 2025.
    • APA

      Emmendoerfer Junior, H., Fancello, E. A., & Silva, E. C. N. (2020). Stress-constrained level set topology optimization for compliant mechanisms. Computer Methods in Applied Mechanics and Engineering, 362, 1-27. doi:10.1016/j.cma.2019.112777
    • NLM

      Emmendoerfer Junior H, Fancello EA, Silva ECN. Stress-constrained level set topology optimization for compliant mechanisms [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 362 1-27.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2019.112777
    • Vancouver

      Emmendoerfer Junior H, Fancello EA, Silva ECN. Stress-constrained level set topology optimization for compliant mechanisms [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 362 1-27.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2019.112777
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Gustavo Assis da e BECK, André Teófilo e SIGMUND, Ole. Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity. Computer Methods in Applied Mechanics and Engineering, v. 365, p. 1-31, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2020.112972. Acesso em: 10 nov. 2025.
    • APA

      Silva, G. A. da, Beck, A. T., & Sigmund, O. (2020). Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity. Computer Methods in Applied Mechanics and Engineering, 365, 1-31. doi:10.1016/j.cma.2020.112972
    • NLM

      Silva GA da, Beck AT, Sigmund O. Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 365 1-31.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2020.112972
    • Vancouver

      Silva GA da, Beck AT, Sigmund O. Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 365 1-31.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2020.112972
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EP

    Subjects: TOPOLOGIA, TENSÃO DOS MATERIAIS, EQUAÇÕES DE HAMILTON-JACOBI, DEFORMAÇÃO E ESTRESSES, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EMMENDOERFER JUNIOR, Hélio e SILVA, Emílio Carlos Nelli e FANCELLO, Eduardo Alberto. Stress-constrained level set topology optimization for design-dependent pressure load problems. Computer Methods in Applied Mechanics and Engineering, v. fe 2019, p. 569-601, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2018.10.004. Acesso em: 10 nov. 2025.
    • APA

      Emmendoerfer Junior, H., Silva, E. C. N., & Fancello, E. A. (2019). Stress-constrained level set topology optimization for design-dependent pressure load problems. Computer Methods in Applied Mechanics and Engineering, fe 2019, 569-601. doi:10.1016/j.cma.2018.10.004
    • NLM

      Emmendoerfer Junior H, Silva ECN, Fancello EA. Stress-constrained level set topology optimization for design-dependent pressure load problems [Internet]. Computer Methods in Applied Mechanics and Engineering. 2019 ; fe 2019 569-601.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2018.10.004
    • Vancouver

      Emmendoerfer Junior H, Silva ECN, Fancello EA. Stress-constrained level set topology optimization for design-dependent pressure load problems [Internet]. Computer Methods in Applied Mechanics and Engineering. 2019 ; fe 2019 569-601.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cma.2018.10.004

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025