Filtros : "Communications in Partial Differential Equations" "Bergamasco, Adalberto Panobianco" Limpar

Filtros



Refine with date range


  • Source: Communications in Partial Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco e MENDOZA, G. A e ZANI, Sérgio Luís. On global hypoellipticity. Communications in Partial Differential Equations, v. 37, n. 9, p. 1517-1527, 2012Tradução . . Disponível em: https://doi.org/10.1080/03605302.2011.641054. Acesso em: 17 nov. 2025.
    • APA

      Bergamasco, A. P., Mendoza, G. A., & Zani, S. L. (2012). On global hypoellipticity. Communications in Partial Differential Equations, 37( 9), 1517-1527. doi:10.1080/03605302.2011.641054
    • NLM

      Bergamasco AP, Mendoza GA, Zani SL. On global hypoellipticity [Internet]. Communications in Partial Differential Equations. 2012 ; 37( 9): 1517-1527.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1080/03605302.2011.641054
    • Vancouver

      Bergamasco AP, Mendoza GA, Zani SL. On global hypoellipticity [Internet]. Communications in Partial Differential Equations. 2012 ; 37( 9): 1517-1527.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1080/03605302.2011.641054
  • Source: Communications in Partial Differential Equations. Unidade: ICMC

    Assunto: ANÁLISE VETORIAL

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco e ZANI, Sérgio Luís. Global analytic regularity for structures of co-rank one. Communications in Partial Differential Equations, v. 33, n. 5, p. 933-941, 2008Tradução . . Disponível em: http://www.informaworld.com/smpp/title~content=g792870897~db=all. Acesso em: 17 nov. 2025.
    • APA

      Bergamasco, A. P., & Zani, S. L. (2008). Global analytic regularity for structures of co-rank one. Communications in Partial Differential Equations, 33( 5), 933-941. Recuperado de http://www.informaworld.com/smpp/title~content=g792870897~db=all
    • NLM

      Bergamasco AP, Zani SL. Global analytic regularity for structures of co-rank one [Internet]. Communications in Partial Differential Equations. 2008 ; 33( 5): 933-941.[citado 2025 nov. 17 ] Available from: http://www.informaworld.com/smpp/title~content=g792870897~db=all
    • Vancouver

      Bergamasco AP, Zani SL. Global analytic regularity for structures of co-rank one [Internet]. Communications in Partial Differential Equations. 2008 ; 33( 5): 933-941.[citado 2025 nov. 17 ] Available from: http://www.informaworld.com/smpp/title~content=g792870897~db=all
  • Source: Communications in Partial Differential Equations. Unidades: ICMC, IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco e CORDARO, Paulo Domingos e PETRONILHO, Gerson. Global solvability for a class of complex vector fields on the two-torus. Communications in Partial Differential Equations, v. 29, n. 5/6, p. 785-819, 2004Tradução . . Disponível em: https://doi.org/10.1081/PDE-120037332. Acesso em: 17 nov. 2025.
    • APA

      Bergamasco, A. P., Cordaro, P. D., & Petronilho, G. (2004). Global solvability for a class of complex vector fields on the two-torus. Communications in Partial Differential Equations, 29( 5/6), 785-819. doi:10.1081/PDE-120037332
    • NLM

      Bergamasco AP, Cordaro PD, Petronilho G. Global solvability for a class of complex vector fields on the two-torus [Internet]. Communications in Partial Differential Equations. 2004 ; 29( 5/6): 785-819.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1081/PDE-120037332
    • Vancouver

      Bergamasco AP, Cordaro PD, Petronilho G. Global solvability for a class of complex vector fields on the two-torus [Internet]. Communications in Partial Differential Equations. 2004 ; 29( 5/6): 785-819.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1081/PDE-120037332

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025