Filtros : "Communications in Algebra" "Financiado pela Natural Sci Eng Res Council of Canada" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILLIG, Yuly e FUTORNY, Vyacheslav. Lie algebras of vector fields on smooth affine varieties. Communications in Algebra, v. 46, n. 8, p. 3413–3429, 2018Tradução . . Disponível em: https://doi.org/10.1080/00927872.2017.1412456. Acesso em: 13 nov. 2025.
    • APA

      Billig, Y., & Futorny, V. (2018). Lie algebras of vector fields on smooth affine varieties. Communications in Algebra, 46( 8), 3413–3429. doi:10.1080/00927872.2017.1412456
    • NLM

      Billig Y, Futorny V. Lie algebras of vector fields on smooth affine varieties [Internet]. Communications in Algebra. 2018 ; 46( 8): 3413–3429.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1080/00927872.2017.1412456
    • Vancouver

      Billig Y, Futorny V. Lie algebras of vector fields on smooth affine varieties [Internet]. Communications in Algebra. 2018 ; 46( 8): 3413–3429.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1080/00927872.2017.1412456
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POLCINO MILIES, Francisco César. Group rings whose torsion units form a subgroup II. Communications in Algebra, v. 9, n. 7, p. 699-712, 1981Tradução . . Disponível em: https://doi.org/10.1080/00927878108822613. Acesso em: 13 nov. 2025.
    • APA

      Polcino Milies, F. C. (1981). Group rings whose torsion units form a subgroup II. Communications in Algebra, 9( 7), 699-712. doi:10.1080/00927878108822613
    • NLM

      Polcino Milies FC. Group rings whose torsion units form a subgroup II [Internet]. Communications in Algebra. 1981 ; 9( 7): 699-712.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1080/00927878108822613
    • Vancouver

      Polcino Milies FC. Group rings whose torsion units form a subgroup II [Internet]. Communications in Algebra. 1981 ; 9( 7): 699-712.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1080/00927878108822613

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025