Filtros : "Communications in Algebra" "Hentzel, Irvin Roy" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENTZEL, Irvin Roy e JURIAANS, Orlando Stanley e PERESI, Luiz Antonio. Polynomial identities of RA and RA2 loop algebras. Communications in Algebra, v. 35, n. 2, p. 589-595, 2007Tradução . . Disponível em: https://doi.org/10.1080/00927870601074822. Acesso em: 14 nov. 2025.
    • APA

      Hentzel, I. R., Juriaans, O. S., & Peresi, L. A. (2007). Polynomial identities of RA and RA2 loop algebras. Communications in Algebra, 35( 2), 589-595. doi:10.1080/00927870601074822
    • NLM

      Hentzel IR, Juriaans OS, Peresi LA. Polynomial identities of RA and RA2 loop algebras [Internet]. Communications in Algebra. 2007 ; 35( 2): 589-595.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1080/00927870601074822
    • Vancouver

      Hentzel IR, Juriaans OS, Peresi LA. Polynomial identities of RA and RA2 loop algebras [Internet]. Communications in Algebra. 2007 ; 35( 2): 589-595.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1080/00927870601074822
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BREMNER, Murray R. e HENTZEL, Irvin Roy e PERESI, Luíz Antônio. Dimension formulas for the free nonassociative algebra. Communications in Algebra, v. 33, n. 11, p. 4063-4081, 2005Tradução . . Disponível em: https://doi.org/10.1080/00927870500261389. Acesso em: 14 nov. 2025.
    • APA

      Bremner, M. R., Hentzel, I. R., & Peresi, L. A. (2005). Dimension formulas for the free nonassociative algebra. Communications in Algebra, 33( 11), 4063-4081. doi:10.1080/00927870500261389
    • NLM

      Bremner MR, Hentzel IR, Peresi LA. Dimension formulas for the free nonassociative algebra [Internet]. Communications in Algebra. 2005 ; 33( 11): 4063-4081.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1080/00927870500261389
    • Vancouver

      Bremner MR, Hentzel IR, Peresi LA. Dimension formulas for the free nonassociative algebra [Internet]. Communications in Algebra. 2005 ; 33( 11): 4063-4081.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1080/00927870500261389
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENTZEL, Irvin Roy e PERESI, Luíz Antônio. A nonzero element of degree 7 in the center of the free alternative algebra. Communications in Algebra, v. 31, n. 3, p. 1279-1299, 2003Tradução . . Disponível em: https://doi.org/10.1081/AGB-120017767. Acesso em: 14 nov. 2025.
    • APA

      Hentzel, I. R., & Peresi, L. A. (2003). A nonzero element of degree 7 in the center of the free alternative algebra. Communications in Algebra, 31( 3), 1279-1299. doi:10.1081/AGB-120017767
    • NLM

      Hentzel IR, Peresi LA. A nonzero element of degree 7 in the center of the free alternative algebra [Internet]. Communications in Algebra. 2003 ; 31( 3): 1279-1299.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1081/AGB-120017767
    • Vancouver

      Hentzel IR, Peresi LA. A nonzero element of degree 7 in the center of the free alternative algebra [Internet]. Communications in Algebra. 2003 ; 31( 3): 1279-1299.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1081/AGB-120017767
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENTZEL, Irvin Roy et al. Solvability of the ideal of all weight zero elements in Bernstein algebras. Communications in Algebra, v. 22, n. 9 , p. 3265-3275, 1994Tradução . . Disponível em: https://doi.org/10.1080/00927879408825028. Acesso em: 14 nov. 2025.
    • APA

      Hentzel, I. R., Jacobs, D. P., Peresi, L. A., & Sverchkov, S. R. (1994). Solvability of the ideal of all weight zero elements in Bernstein algebras. Communications in Algebra, 22( 9 ), 3265-3275. doi:10.1080/00927879408825028
    • NLM

      Hentzel IR, Jacobs DP, Peresi LA, Sverchkov SR. Solvability of the ideal of all weight zero elements in Bernstein algebras [Internet]. Communications in Algebra. 1994 ; 22( 9 ): 3265-3275.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1080/00927879408825028
    • Vancouver

      Hentzel IR, Jacobs DP, Peresi LA, Sverchkov SR. Solvability of the ideal of all weight zero elements in Bernstein algebras [Internet]. Communications in Algebra. 1994 ; 22( 9 ): 3265-3275.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1080/00927879408825028

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025