Filtros : "CHEMETOV, NIKOLAI VASILIEVICH" "2022" Removido: "CONJUNTOS ORDENADOS" Limpar

Filtros



Limitar por data


  • Fonte: Electronic Journal of Differential Equations. Unidade: FFCLRP

    Assuntos: MATEMÁTICA, EQUAÇÕES DE NAVIER-STOKES, SINGULARIDADES, FLUÍDOS COMPLEXOS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA, Adilson e CHEMETOV, Nikolai Vasilievich e CIPRIANO, Fernanda. Uniqueness for optimal control problems of two-dimensional second grade fluids. Electronic Journal of Differential Equations, v. 2022, n. 22, p. 1-12, 2022Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf. Acesso em: 28 nov. 2025.
    • APA

      Almeida, A., Chemetov, N. V., & Cipriano, F. (2022). Uniqueness for optimal control problems of two-dimensional second grade fluids. Electronic Journal of Differential Equations, 2022( 22), 1-12. Recuperado de https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf
    • NLM

      Almeida A, Chemetov NV, Cipriano F. Uniqueness for optimal control problems of two-dimensional second grade fluids [Internet]. Electronic Journal of Differential Equations. 2022 ; 2022( 22): 1-12.[citado 2025 nov. 28 ] Available from: https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf
    • Vancouver

      Almeida A, Chemetov NV, Cipriano F. Uniqueness for optimal control problems of two-dimensional second grade fluids [Internet]. Electronic Journal of Differential Equations. 2022 ; 2022( 22): 1-12.[citado 2025 nov. 28 ] Available from: https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf
  • Fonte: Topical Problems of Fluid Mechanics. Nome do evento: Conference of Institute of Thermomechanics of the Czech Academy of Sciences. Unidade: FFCLRP

    Assuntos: EQUAÇÕES DE NAVIER-STOKES, EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEMETOV, Nikolai Vasilievich. The rigid body motion in cosserat´s fluid with navier´s slip boundary conditions. Topical Problems of Fluid Mechanics. Praga: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.14311/TPFM.2022.003. Acesso em: 28 nov. 2025. , 2022
    • APA

      Chemetov, N. V. (2022). The rigid body motion in cosserat´s fluid with navier´s slip boundary conditions. Topical Problems of Fluid Mechanics. Praga: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.14311/TPFM.2022.003
    • NLM

      Chemetov NV. The rigid body motion in cosserat´s fluid with navier´s slip boundary conditions [Internet]. Topical Problems of Fluid Mechanics. 2022 ; 17-22.[citado 2025 nov. 28 ] Available from: https://doi.org/10.14311/TPFM.2022.003
    • Vancouver

      Chemetov NV. The rigid body motion in cosserat´s fluid with navier´s slip boundary conditions [Internet]. Topical Problems of Fluid Mechanics. 2022 ; 17-22.[citado 2025 nov. 28 ] Available from: https://doi.org/10.14311/TPFM.2022.003
  • Fonte: Nonlinear Differential Equations and Applications NoDEA. Unidade: FFCLRP

    Assuntos: FLUÍDOS COMPLEXOS, MODELOS MATEMÁTICOS, TENSORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Anderson L. A. de e CHEMETOV, Nikolai Vasilievich. Well-posedness of the Cosserat–Bingham fluid equations. Nonlinear Differential Equations and Applications NoDEA, v. 29, n. 3, p. 1-24, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00030-022-00759-2. Acesso em: 28 nov. 2025.
    • APA

      Araujo, A. L. A. de, & Chemetov, N. V. (2022). Well-posedness of the Cosserat–Bingham fluid equations. Nonlinear Differential Equations and Applications NoDEA, 29( 3), 1-24. doi:10.1007/s00030-022-00759-2
    • NLM

      Araujo ALA de, Chemetov NV. Well-posedness of the Cosserat–Bingham fluid equations [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2022 ; 29( 3): 1-24.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00030-022-00759-2
    • Vancouver

      Araujo ALA de, Chemetov NV. Well-posedness of the Cosserat–Bingham fluid equations [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2022 ; 29( 3): 1-24.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00030-022-00759-2

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025