Filtros : "FUNÇÕES ESPECIAIS" "Journal of Differential Equations" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M e CARVALHO, Alexandre Nolasco de e RODRIGUEZ-BERNAL, Anibal. Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions. Journal of Differential Equations, v. 168, n. 1, p. 33-59, 2000Tradução . . Acesso em: 27 nov. 2025.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, & Rodriguez-Bernal, A. (2000). Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions. Journal of Differential Equations, 168( 1), 33-59.
    • NLM

      Arrieta JM, Carvalho AN de, Rodriguez-Bernal A. Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions. Journal of Differential Equations. 2000 ; 168( 1): 33-59.[citado 2025 nov. 27 ]
    • Vancouver

      Arrieta JM, Carvalho AN de, Rodriguez-Bernal A. Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions. Journal of Differential Equations. 2000 ; 168( 1): 33-59.[citado 2025 nov. 27 ]
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUSCHI, Simone Mazzini e CARVALHO, Alexandre Nolasco de e RUAS FILHO, José Gaspar. The dynamics of a one-dimensional scalar parabolic problem versus the dynamics of its discretization. Journal of Differential Equations, v. 168, n. 1, p. 67-92, 2000Tradução . . Acesso em: 27 nov. 2025.
    • APA

      Bruschi, S. M., Carvalho, A. N. de, & Ruas Filho, J. G. (2000). The dynamics of a one-dimensional scalar parabolic problem versus the dynamics of its discretization. Journal of Differential Equations, 168( 1), 67-92.
    • NLM

      Bruschi SM, Carvalho AN de, Ruas Filho JG. The dynamics of a one-dimensional scalar parabolic problem versus the dynamics of its discretization. Journal of Differential Equations. 2000 ;168( 1): 67-92.[citado 2025 nov. 27 ]
    • Vancouver

      Bruschi SM, Carvalho AN de, Ruas Filho JG. The dynamics of a one-dimensional scalar parabolic problem versus the dynamics of its discretization. Journal of Differential Equations. 2000 ;168( 1): 67-92.[citado 2025 nov. 27 ]
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTINI, M Z e TABOAS, Placido Zoega. On the existence and global bifurcation of periodic solutions to planar differential delay equations. Journal of Differential Equations, v. 127, n. 2 , p. 391-425, 1996Tradução . . Acesso em: 27 nov. 2025.
    • APA

      Baptistini, M. Z., & Taboas, P. Z. (1996). On the existence and global bifurcation of periodic solutions to planar differential delay equations. Journal of Differential Equations, 127( 2 ), 391-425.
    • NLM

      Baptistini MZ, Taboas PZ. On the existence and global bifurcation of periodic solutions to planar differential delay equations. Journal of Differential Equations. 1996 ;127( 2 ): 391-425.[citado 2025 nov. 27 ]
    • Vancouver

      Baptistini MZ, Taboas PZ. On the existence and global bifurcation of periodic solutions to planar differential delay equations. Journal of Differential Equations. 1996 ;127( 2 ): 391-425.[citado 2025 nov. 27 ]
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de. Infinite dimensional dynamics described by ordinary differential equations. Journal of Differential Equations, v. 116, n. 2 , p. 338-404, 1995Tradução . . Acesso em: 27 nov. 2025.
    • APA

      Carvalho, A. N. de. (1995). Infinite dimensional dynamics described by ordinary differential equations. Journal of Differential Equations, 116( 2 ), 338-404.
    • NLM

      Carvalho AN de. Infinite dimensional dynamics described by ordinary differential equations. Journal of Differential Equations. 1995 ;116( 2 ): 338-404.[citado 2025 nov. 27 ]
    • Vancouver

      Carvalho AN de. Infinite dimensional dynamics described by ordinary differential equations. Journal of Differential Equations. 1995 ;116( 2 ): 338-404.[citado 2025 nov. 27 ]
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e RUAS FILHO, José Gaspar. Evolution equations: dichotomies and the fredholm alternative for bounded solutions. Journal of Differential Equations, v. 119, n. 2 , p. 263-83, 1995Tradução . . Acesso em: 27 nov. 2025.
    • APA

      Rodrigues, H. M., & Ruas Filho, J. G. (1995). Evolution equations: dichotomies and the fredholm alternative for bounded solutions. Journal of Differential Equations, 119( 2 ), 263-83.
    • NLM

      Rodrigues HM, Ruas Filho JG. Evolution equations: dichotomies and the fredholm alternative for bounded solutions. Journal of Differential Equations. 1995 ;119( 2 ): 263-83.[citado 2025 nov. 27 ]
    • Vancouver

      Rodrigues HM, Ruas Filho JG. Evolution equations: dichotomies and the fredholm alternative for bounded solutions. Journal of Differential Equations. 1995 ;119( 2 ): 263-83.[citado 2025 nov. 27 ]
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: FUNÇÕES ESPECIAIS, COMPUTAÇÃO APLICADA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Sérgio Muniz. Reaction-diffusion systems on domains with thin channels. Journal of Differential Equations, v. 123, n. 2 , p. 437-79, 1995Tradução . . Disponível em: https://doi.org/10.1006/jdeq.1995.1169. Acesso em: 27 nov. 2025.
    • APA

      Oliva, S. M. (1995). Reaction-diffusion systems on domains with thin channels. Journal of Differential Equations, 123( 2 ), 437-79. doi:10.1006/jdeq.1995.1169
    • NLM

      Oliva SM. Reaction-diffusion systems on domains with thin channels [Internet]. Journal of Differential Equations. 1995 ; 123( 2 ): 437-79.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1006/jdeq.1995.1169
    • Vancouver

      Oliva SM. Reaction-diffusion systems on domains with thin channels [Internet]. Journal of Differential Equations. 1995 ; 123( 2 ): 437-79.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1006/jdeq.1995.1169
  • Source: Journal of Differential Equations. Unidades: ICMC, IME

    Subjects: FUNÇÕES ESPECIAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PEREIRA, Antonio Luiz. A scalar parabolic equation whose asymptotic behavior is dictated by a system of ordinary differential equations. Journal of Differential Equations, v. 112, n. 1, p. 81-130, 1994Tradução . . Disponível em: https://doi.org/10.1006/jdeq.1994.1096. Acesso em: 27 nov. 2025.
    • APA

      Carvalho, A. N. de, & Pereira, A. L. (1994). A scalar parabolic equation whose asymptotic behavior is dictated by a system of ordinary differential equations. Journal of Differential Equations, 112( 1), 81-130. doi:10.1006/jdeq.1994.1096
    • NLM

      Carvalho AN de, Pereira AL. A scalar parabolic equation whose asymptotic behavior is dictated by a system of ordinary differential equations [Internet]. Journal of Differential Equations. 1994 ; 112( 1): 81-130.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1006/jdeq.1994.1096
    • Vancouver

      Carvalho AN de, Pereira AL. A scalar parabolic equation whose asymptotic behavior is dictated by a system of ordinary differential equations [Internet]. Journal of Differential Equations. 1994 ; 112( 1): 81-130.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1006/jdeq.1994.1096
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: FUNÇÕES ESPECIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CESAR, Mauro de Oliveira e BARONE NETTO, Angelo. A necessary and sufficient condition for the stability of the equilibrium. Journal of Differential Equations, v. 96, n. 1 , p. 142-151, 1992Tradução . . Disponível em: https://doi.org/10.1016/0022-0396(92)90147-f. Acesso em: 27 nov. 2025.
    • APA

      Cesar, M. de O., & Barone Netto, A. (1992). A necessary and sufficient condition for the stability of the equilibrium. Journal of Differential Equations, 96( 1 ), 142-151. doi:10.1016/0022-0396(92)90147-f
    • NLM

      Cesar M de O, Barone Netto A. A necessary and sufficient condition for the stability of the equilibrium [Internet]. Journal of Differential Equations. 1992 ; 96( 1 ): 142-151.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/0022-0396(92)90147-f
    • Vancouver

      Cesar M de O, Barone Netto A. A necessary and sufficient condition for the stability of the equilibrium [Internet]. Journal of Differential Equations. 1992 ; 96( 1 ): 142-151.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/0022-0396(92)90147-f
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HALE, J.K. e LADEIRA, Luiz Augusto da Costa. Differentiability with respect to delays. Journal of Differential Equations, v. 92, n. 1 , p. 14-26, 1991Tradução . . Disponível em: https://doi.org/10.1016/0022-0396(91)90061-d. Acesso em: 27 nov. 2025.
    • APA

      Hale, J. K., & Ladeira, L. A. da C. (1991). Differentiability with respect to delays. Journal of Differential Equations, 92( 1 ), 14-26. doi:10.1016/0022-0396(91)90061-d
    • NLM

      Hale JK, Ladeira LA da C. Differentiability with respect to delays [Internet]. Journal of Differential Equations. 1991 ;92( 1 ): 14-26.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/0022-0396(91)90061-d
    • Vancouver

      Hale JK, Ladeira LA da C. Differentiability with respect to delays [Internet]. Journal of Differential Equations. 1991 ;92( 1 ): 14-26.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/0022-0396(91)90061-d

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025