Filtros : "Indexado na Scopus" "Financiamento ANP" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Electroanalytical Chemistry. Unidade: IQSC

    Assuntos: ELETROCATÁLISE, COBRE, DIÓXIDO DE CARBONO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VENKATKARTHICK, Radhakrishnan e LIMA, Fabio Henrique Barros de. Polythiophene-decorated copper via polypyrrole intermediary passivation layer for enhanced electrocatalytic reduction of carbon dioxide. Journal of Electroanalytical Chemistry, v. 961, p. 118241, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jelechem.2024.118241. Acesso em: 17 out. 2024.
    • APA

      Venkatkarthick, R., & Lima, F. H. B. de. (2024). Polythiophene-decorated copper via polypyrrole intermediary passivation layer for enhanced electrocatalytic reduction of carbon dioxide. Journal of Electroanalytical Chemistry, 961, 118241. doi:10.1016/j.jelechem.2024.118241
    • NLM

      Venkatkarthick R, Lima FHB de. Polythiophene-decorated copper via polypyrrole intermediary passivation layer for enhanced electrocatalytic reduction of carbon dioxide [Internet]. Journal of Electroanalytical Chemistry. 2024 ; 961 118241.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.jelechem.2024.118241
    • Vancouver

      Venkatkarthick R, Lima FHB de. Polythiophene-decorated copper via polypyrrole intermediary passivation layer for enhanced electrocatalytic reduction of carbon dioxide [Internet]. Journal of Electroanalytical Chemistry. 2024 ; 961 118241.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.jelechem.2024.118241
  • Fonte: International Journal of Hydrogen Energy. Unidade: IQSC

    Assuntos: CATÁLISE, COBRE, CÉRIO, PLATINA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Aline Rodrigues Miranda et al. Cooperative effect of Pt and Cu on CeO2 for the CO-PROX reaction under CO2eH2O feed stream. International Journal of Hydrogen Energy, v. 48, n. 64, p. 24961-24975, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ijhydene.2023.01.077. Acesso em: 17 out. 2024.
    • APA

      Cruz, A. R. M., Vieira, L. H., Assaf, E. M., Gomes, J. F., & Assaf, J. M. (2023). Cooperative effect of Pt and Cu on CeO2 for the CO-PROX reaction under CO2eH2O feed stream. International Journal of Hydrogen Energy, 48( 64), 24961-24975. doi:10.1016/j.ijhydene.2023.01.077
    • NLM

      Cruz ARM, Vieira LH, Assaf EM, Gomes JF, Assaf JM. Cooperative effect of Pt and Cu on CeO2 for the CO-PROX reaction under CO2eH2O feed stream [Internet]. International Journal of Hydrogen Energy. 2023 ; 48( 64): 24961-24975.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.ijhydene.2023.01.077
    • Vancouver

      Cruz ARM, Vieira LH, Assaf EM, Gomes JF, Assaf JM. Cooperative effect of Pt and Cu on CeO2 for the CO-PROX reaction under CO2eH2O feed stream [Internet]. International Journal of Hydrogen Energy. 2023 ; 48( 64): 24961-24975.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.ijhydene.2023.01.077
  • Fonte: ACS Catalysis. Unidades: RUSP, IQSC

    Assuntos: ÁLCOOL, ELETRODO, PLATINA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALAZAR, Enrique Adalberto Paredes e CÁRDENAS, Alfredo Calderón e VARELA, Hamilton. Microkinetic Modeling of the Methanol Electro-oxidation Reaction on Platinum. ACS Catalysis, v. 13, n. 14, p. 9366–9378, 2023Tradução . . Disponível em: https://doi.org/10.1021/acscatal.3c00838. Acesso em: 17 out. 2024.
    • APA

      Salazar, E. A. P., Cárdenas, A. C., & Varela, H. (2023). Microkinetic Modeling of the Methanol Electro-oxidation Reaction on Platinum. ACS Catalysis, 13( 14), 9366–9378. doi:10.1021/acscatal.3c00838
    • NLM

      Salazar EAP, Cárdenas AC, Varela H. Microkinetic Modeling of the Methanol Electro-oxidation Reaction on Platinum [Internet]. ACS Catalysis. 2023 ; 13( 14): 9366–9378.[citado 2024 out. 17 ] Available from: https://doi.org/10.1021/acscatal.3c00838
    • Vancouver

      Salazar EAP, Cárdenas AC, Varela H. Microkinetic Modeling of the Methanol Electro-oxidation Reaction on Platinum [Internet]. ACS Catalysis. 2023 ; 13( 14): 9366–9378.[citado 2024 out. 17 ] Available from: https://doi.org/10.1021/acscatal.3c00838
  • Fonte: Trends in Analytical Chemistry. Unidade: IQSC

    Assuntos: SENSORES QUÍMICOS, PETRÓLEO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PASQUALETI, Anielli Martini et al. Sensors for detection of production chemicals and oil in produced water. Trends in Analytical Chemistry, v. 168, p. 117305, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.trac.2023.117305. Acesso em: 17 out. 2024.
    • APA

      Pasqualeti, A. M., Shimizu, F. M., Oliveira, L. P. de, Oliveira, R. A. G. de, Carvalho, R. M. de, Fontes, R. A., et al. (2023). Sensors for detection of production chemicals and oil in produced water. Trends in Analytical Chemistry, 168, 117305. doi:10.1016/j.trac.2023.117305
    • NLM

      Pasqualeti AM, Shimizu FM, Oliveira LP de, Oliveira RAG de, Carvalho RM de, Fontes RA, Gobbi AL, Lima RS. Sensors for detection of production chemicals and oil in produced water [Internet]. Trends in Analytical Chemistry. 2023 ;168 117305.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.trac.2023.117305
    • Vancouver

      Pasqualeti AM, Shimizu FM, Oliveira LP de, Oliveira RAG de, Carvalho RM de, Fontes RA, Gobbi AL, Lima RS. Sensors for detection of production chemicals and oil in produced water [Internet]. Trends in Analytical Chemistry. 2023 ;168 117305.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.trac.2023.117305
  • Fonte: Computational Materials Science. Unidade: IQSC

    Assunto: TOPOLOGIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRIFFITH, M.A.R. et al. Enhancing topological Weyl Semimetals by Janus transition-metal dichalcogenides structures. Computational Materials Science, v. 218, p. 112004, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.commatsci.2022.112004. Acesso em: 17 out. 2024.
    • APA

      Griffith, M. A. R., Rufo, S., Dias, A. C., & Silva, J. L. F. da. (2023). Enhancing topological Weyl Semimetals by Janus transition-metal dichalcogenides structures. Computational Materials Science, 218, 112004. doi:10.1016/j.commatsci.2022.112004
    • NLM

      Griffith MAR, Rufo S, Dias AC, Silva JLF da. Enhancing topological Weyl Semimetals by Janus transition-metal dichalcogenides structures [Internet]. Computational Materials Science. 2023 ; 218 112004.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.commatsci.2022.112004
    • Vancouver

      Griffith MAR, Rufo S, Dias AC, Silva JLF da. Enhancing topological Weyl Semimetals by Janus transition-metal dichalcogenides structures [Internet]. Computational Materials Science. 2023 ; 218 112004.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.commatsci.2022.112004
  • Fonte: Journal of Physical Chemistry C. Unidades: IQSC, IFSC

    Assuntos: FÍSICO-QUÍMICA, METAIS, QUÍMICA TEÓRICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVEIRA, Julian Francisco Rama Vieira et al. Tailoring excitonic and optoelectronic properties of transition metal dichalcogenide bilayers. Journal of Physical Chemistry C, v. 126, n. 21, p. 9173-9184, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jpcc.2c02023. Acesso em: 17 out. 2024.
    • APA

      Silveira, J. F. R. V., Besse, R., Dias, A. C., Caturello, N. A. M. S., & Silva, J. L. F. da. (2022). Tailoring excitonic and optoelectronic properties of transition metal dichalcogenide bilayers. Journal of Physical Chemistry C, 126( 21), 9173-9184. doi:10.1021/acs.jpcc.2c02023
    • NLM

      Silveira JFRV, Besse R, Dias AC, Caturello NAMS, Silva JLF da. Tailoring excitonic and optoelectronic properties of transition metal dichalcogenide bilayers [Internet]. Journal of Physical Chemistry C. 2022 ; 126( 21): 9173-9184.[citado 2024 out. 17 ] Available from: https://doi.org/10.1021/acs.jpcc.2c02023
    • Vancouver

      Silveira JFRV, Besse R, Dias AC, Caturello NAMS, Silva JLF da. Tailoring excitonic and optoelectronic properties of transition metal dichalcogenide bilayers [Internet]. Journal of Physical Chemistry C. 2022 ; 126( 21): 9173-9184.[citado 2024 out. 17 ] Available from: https://doi.org/10.1021/acs.jpcc.2c02023
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: ENERGIA, MOLÉCULA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Andre F e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, v. 62, p. 817−828, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c01573. Acesso em: 17 out. 2024.
    • APA

      Oliveira, A. F., Silva, J. L. F. da, & Quiles, M. G. (2022). Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, 62, 817−828. doi:10.1021/acs.jcim.1c01573
    • NLM

      Oliveira AF, Silva JLF da, Quiles MG. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 817−828.[citado 2024 out. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c01573
    • Vancouver

      Oliveira AF, Silva JLF da, Quiles MG. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 817−828.[citado 2024 out. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c01573
  • Fonte: Catalysis Science & Technology. Unidades: IQSC, CENA

    Assuntos: ELETROQUÍMICA, CATALISADORES, REDUÇÃO

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VERGA, Lucas Garcia et al. Exploring the adsorption site coordination as a strategy to tune copper catalysts for CO2 electro-reduction. Catalysis Science & Technology, v. 12, p. 869-879, 2022Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1039/D1CY02010B. Acesso em: 17 out. 2024.
    • APA

      Verga, L. G., Mendes, P. de C. D., Restrepo, V. k, & Silva, J. L. F. da. (2022). Exploring the adsorption site coordination as a strategy to tune copper catalysts for CO2 electro-reduction. Catalysis Science & Technology, 12, 869-879. doi:10.1039/D1CY02010B
    • NLM

      Verga LG, Mendes P de CD, Restrepo V k, Silva JLF da. Exploring the adsorption site coordination as a strategy to tune copper catalysts for CO2 electro-reduction [Internet]. Catalysis Science & Technology. 2022 ; 12 869-879.[citado 2024 out. 17 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1039/D1CY02010B
    • Vancouver

      Verga LG, Mendes P de CD, Restrepo V k, Silva JLF da. Exploring the adsorption site coordination as a strategy to tune copper catalysts for CO2 electro-reduction [Internet]. Catalysis Science & Technology. 2022 ; 12 869-879.[citado 2024 out. 17 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1039/D1CY02010B

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024