Filtros : "Stochastic Processes and their Applications" "Universidade Estadual de Campinas (UNICAMP)" Limpar

Filtros



Refine with date range


  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREIRE, M. V. e POPOV, Serguei Yu e VACHKOVSKAIA, A. Percolation for the stable marriage of Poisson and Lebesgue. Stochastic Processes and their Applications, v. 117, n. 4, p. 514-525, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2006.09.002. Acesso em: 16 nov. 2025.
    • APA

      Freire, M. V., Popov, S. Y., & Vachkovskaia, A. (2007). Percolation for the stable marriage of Poisson and Lebesgue. Stochastic Processes and their Applications, 117( 4), 514-525. doi:10.1016/j.spa.2006.09.002
    • NLM

      Freire MV, Popov SY, Vachkovskaia A. Percolation for the stable marriage of Poisson and Lebesgue [Internet]. Stochastic Processes and their Applications. 2007 ; 117( 4): 514-525.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.spa.2006.09.002
    • Vancouver

      Freire MV, Popov SY, Vachkovskaia A. Percolation for the stable marriage of Poisson and Lebesgue [Internet]. Stochastic Processes and their Applications. 2007 ; 117( 4): 514-525.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.spa.2006.09.002
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MEDEIROS, Deborah Pereira de e VACHKOVSKAIA, Marina. Time fluctuations of the random average process with parabolic initial conditions. Stochastic Processes and their Applications, v. 103, n. 2, p. 257-276, 2003Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(02)00210-7. Acesso em: 16 nov. 2025.
    • APA

      Fontes, L. R., Medeiros, D. P. de, & Vachkovskaia, M. (2003). Time fluctuations of the random average process with parabolic initial conditions. Stochastic Processes and their Applications, 103( 2), 257-276. doi:10.1016/s0304-4149(02)00210-7
    • NLM

      Fontes LR, Medeiros DP de, Vachkovskaia M. Time fluctuations of the random average process with parabolic initial conditions [Internet]. Stochastic Processes and their Applications. 2003 ; 103( 2): 257-276.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/s0304-4149(02)00210-7
    • Vancouver

      Fontes LR, Medeiros DP de, Vachkovskaia M. Time fluctuations of the random average process with parabolic initial conditions [Internet]. Stochastic Processes and their Applications. 2003 ; 103( 2): 257-276.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/s0304-4149(02)00210-7
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS DE POISSON

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e FERNÁNDEZ, Roberto e GARCIA, Nancy Lopes. Perfect simulation for interacting point processes, loss networks and ising models. Stochastic Processes and their Applications, v. 102, n. 1, p. 63-88, 2002Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(02)00180-1. Acesso em: 16 nov. 2025.
    • APA

      Ferrari, P. A., Fernández, R., & Garcia, N. L. (2002). Perfect simulation for interacting point processes, loss networks and ising models. Stochastic Processes and their Applications, 102( 1), 63-88. doi:10.1016/s0304-4149(02)00180-1
    • NLM

      Ferrari PA, Fernández R, Garcia NL. Perfect simulation for interacting point processes, loss networks and ising models [Internet]. Stochastic Processes and their Applications. 2002 ; 102( 1): 63-88.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/s0304-4149(02)00180-1
    • Vancouver

      Ferrari PA, Fernández R, Garcia NL. Perfect simulation for interacting point processes, loss networks and ising models [Internet]. Stochastic Processes and their Applications. 2002 ; 102( 1): 63-88.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/s0304-4149(02)00180-1
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDJEL, Enrique Daniel et al. Convergence to the maximal invariant measure for a zero-range process with random rates. Stochastic Processes and their Applications, v. 90, n. 1, p. 67-81, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(00)00037-5. Acesso em: 16 nov. 2025.
    • APA

      Andjel, E. D., Ferrari, P. A., Guiol, H., & Landim, C. da C. (2000). Convergence to the maximal invariant measure for a zero-range process with random rates. Stochastic Processes and their Applications, 90( 1), 67-81. doi:10.1016/s0304-4149(00)00037-5
    • NLM

      Andjel ED, Ferrari PA, Guiol H, Landim C da C. Convergence to the maximal invariant measure for a zero-range process with random rates [Internet]. Stochastic Processes and their Applications. 2000 ; 90( 1): 67-81.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/s0304-4149(00)00037-5
    • Vancouver

      Andjel ED, Ferrari PA, Guiol H, Landim C da C. Convergence to the maximal invariant measure for a zero-range process with random rates [Internet]. Stochastic Processes and their Applications. 2000 ; 90( 1): 67-81.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/s0304-4149(00)00037-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025