Filtros : "Probability Theory and Related Fields" "Schonmann, Roberto Henrique" Limpar

Filtros



Refine with date range


  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: INFERÊNCIA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e SCHONMANN, Roberto Henrique. Threshold θ≥2 contact processes on homogeneous trees. Probability Theory and Related Fields, v. 141, n. 3-4, p. 513-541, 2008Tradução . . Disponível em: https://doi.org/10.1007/s00440-007-0092-z. Acesso em: 12 nov. 2025.
    • APA

      Fontes, L. R., & Schonmann, R. H. (2008). Threshold θ≥2 contact processes on homogeneous trees. Probability Theory and Related Fields, 141( 3-4), 513-541. doi:10.1007/s00440-007-0092-z
    • NLM

      Fontes LR, Schonmann RH. Threshold θ≥2 contact processes on homogeneous trees [Internet]. Probability Theory and Related Fields. 2008 ; 141( 3-4): 513-541.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/s00440-007-0092-z
    • Vancouver

      Fontes LR, Schonmann RH. Threshold θ≥2 contact processes on homogeneous trees [Internet]. Probability Theory and Related Fields. 2008 ; 141( 3-4): 513-541.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/s00440-007-0092-z
  • Source: Probability Theory and Related Fields. Unidade: IME

    Subjects: GRANDES DESVIOS, PROCESSOS ESTOCÁSTICOS, TEOREMAS LIMITES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHONMANN, Roberto Henrique. Exponential convergence under mixing. Probability Theory and Related Fields, v. 81, n. 2 , p. 235-8, 1989Tradução . . Disponível em: https://doi.org/10.1007/bf00319552. Acesso em: 12 nov. 2025.
    • APA

      Schonmann, R. H. (1989). Exponential convergence under mixing. Probability Theory and Related Fields, 81( 2 ), 235-8. doi:10.1007/bf00319552
    • NLM

      Schonmann RH. Exponential convergence under mixing [Internet]. Probability Theory and Related Fields. 1989 ;81( 2 ): 235-8.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/bf00319552
    • Vancouver

      Schonmann RH. Exponential convergence under mixing [Internet]. Probability Theory and Related Fields. 1989 ;81( 2 ): 235-8.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/bf00319552
  • Source: Probability Theory and Related Fields. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PERCOLAÇÃO, TEOREMAS LIMITES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEBOWITZ, J L e SCHONMANN, Roberto Henrique. Pseudo-free energies and large deviations for non-Gibbsian FKG measures. Probability Theory and Related Fields, v. 77, n. 1 , p. 49-64, 1988Tradução . . Disponível em: https://doi.org/10.1007/bf01848130. Acesso em: 12 nov. 2025.
    • APA

      Lebowitz, J. L., & Schonmann, R. H. (1988). Pseudo-free energies and large deviations for non-Gibbsian FKG measures. Probability Theory and Related Fields, 77( 1 ), 49-64. doi:10.1007/bf01848130
    • NLM

      Lebowitz JL, Schonmann RH. Pseudo-free energies and large deviations for non-Gibbsian FKG measures [Internet]. Probability Theory and Related Fields. 1988 ;77( 1 ): 49-64.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/bf01848130
    • Vancouver

      Lebowitz JL, Schonmann RH. Pseudo-free energies and large deviations for non-Gibbsian FKG measures [Internet]. Probability Theory and Related Fields. 1988 ;77( 1 ): 49-64.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/bf01848130
  • Source: Probability Theory and Related Fields. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, TEOREMAS LIMITES, PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DURRETT, Richard e SCHONMANN, Roberto Henrique. Large deviations for the contact process and two dimensional percolation. Probability Theory and Related Fields, v. 77, n. 4 , p. 583-603, 1988Tradução . . Disponível em: https://doi.org/10.1007/bf00959619. Acesso em: 12 nov. 2025.
    • APA

      Durrett, R., & Schonmann, R. H. (1988). Large deviations for the contact process and two dimensional percolation. Probability Theory and Related Fields, 77( 4 ), 583-603. doi:10.1007/bf00959619
    • NLM

      Durrett R, Schonmann RH. Large deviations for the contact process and two dimensional percolation [Internet]. Probability Theory and Related Fields. 1988 ;77( 4 ): 583-603.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/bf00959619
    • Vancouver

      Durrett R, Schonmann RH. Large deviations for the contact process and two dimensional percolation [Internet]. Probability Theory and Related Fields. 1988 ;77( 4 ): 583-603.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/bf00959619
  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: PROCESSOS ALEATÓRIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHONMANN, Roberto Henrique e VARES, Maria Eulalia. The survival of the large dimensional basic contact process. Probability Theory and Related Fields, v. 72, p. 387-393, 1986Tradução . . Disponível em: https://doi.org/10.1007/BF00334192. Acesso em: 12 nov. 2025.
    • APA

      Schonmann, R. H., & Vares, M. E. (1986). The survival of the large dimensional basic contact process. Probability Theory and Related Fields, 72, 387-393. doi:10.1007/BF00334192
    • NLM

      Schonmann RH, Vares ME. The survival of the large dimensional basic contact process [Internet]. Probability Theory and Related Fields. 1986 ; 72 387-393.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/BF00334192
    • Vancouver

      Schonmann RH, Vares ME. The survival of the large dimensional basic contact process [Internet]. Probability Theory and Related Fields. 1986 ; 72 387-393.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/BF00334192

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025