Filtros : "Probability Theory and Related Fields" "Popov, Serguei Yu" Limpar

Filtros



Refine with date range


  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRIBERGH, Alexander e GANTERT, Nina e POPOV, Serguei Yu. On slowdown and speedup of transient random walks in random environment. Probability Theory and Related Fields, v. 147, n. 1-2, p. 43-88, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00440-009-0201-2. Acesso em: 10 nov. 2025.
    • APA

      Fribergh, A., Gantert, N., & Popov, S. Y. (2010). On slowdown and speedup of transient random walks in random environment. Probability Theory and Related Fields, 147( 1-2), 43-88. doi:10.1007/s00440-009-0201-2
    • NLM

      Fribergh A, Gantert N, Popov SY. On slowdown and speedup of transient random walks in random environment [Internet]. Probability Theory and Related Fields. 2010 ; 147( 1-2): 43-88.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1007/s00440-009-0201-2
    • Vancouver

      Fribergh A, Gantert N, Popov SY. On slowdown and speedup of transient random walks in random environment [Internet]. Probability Theory and Related Fields. 2010 ; 147( 1-2): 43-88.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1007/s00440-009-0201-2
  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMETS, Francis M. e POPOV, Serguei Yu. Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment. Probability Theory and Related Fields, v. 126, n. 4, p. 571-609, 2003Tradução . . Disponível em: https://doi.org/10.1007/s00440-003-0273-3. Acesso em: 10 nov. 2025.
    • APA

      Comets, F. M., & Popov, S. Y. (2003). Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment. Probability Theory and Related Fields, 126( 4), 571-609. doi:10.1007/s00440-003-0273-3
    • NLM

      Comets FM, Popov SY. Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment [Internet]. Probability Theory and Related Fields. 2003 ; 126( 4): 571-609.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1007/s00440-003-0273-3
    • Vancouver

      Comets FM, Popov SY. Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment [Internet]. Probability Theory and Related Fields. 2003 ; 126( 4): 571-609.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1007/s00440-003-0273-3
  • Source: Probability Theory and Related Fields. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu e VACHKOVSKAIA, Marina. On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, v. 119, n. 2, p. 176-186, 2001Tradução . . Disponível em: https://doi.org/10.1007/pl00008757. Acesso em: 10 nov. 2025.
    • APA

      Menshikov, M. V. 'evich, Popov, S. Y., & Vachkovskaia, M. (2001). On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, 119( 2), 176-186. doi:10.1007/pl00008757
    • NLM

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1007/pl00008757
    • Vancouver

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1007/pl00008757

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025