Filtros : "Journal of Statistical Physics" "Schonmann, Roberto Henrique" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e SCHONMANN, Roberto Henrique. Bootstrap percolation on homogeneous trees has 2 phase transitions. Journal of Statistical Physics, v. 132, n. 5, p. 839-861, 2008Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s10955-008-9583-2. Acesso em: 15 nov. 2025.
    • APA

      Fontes, L. R., & Schonmann, R. H. (2008). Bootstrap percolation on homogeneous trees has 2 phase transitions. Journal of Statistical Physics, 132( 5), 839-861. doi:10.1007%2Fs10955-008-9583-2
    • NLM

      Fontes LR, Schonmann RH. Bootstrap percolation on homogeneous trees has 2 phase transitions [Internet]. Journal of Statistical Physics. 2008 ; 132( 5): 839-861.[citado 2025 nov. 15 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s10955-008-9583-2
    • Vancouver

      Fontes LR, Schonmann RH. Bootstrap percolation on homogeneous trees has 2 phase transitions [Internet]. Journal of Statistical Physics. 2008 ; 132( 5): 839-861.[citado 2025 nov. 15 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s10955-008-9583-2
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KIRA, Elisabeti e NEVES, Eduardo Jordão e SCHONMANN, Roberto Henrique. Percolation in a voronoi competition-growth model. Journal of Statistical Physics, v. 92, n. 5/6, p. 755-764, 1998Tradução . . Disponível em: https://doi.org/10.1023/A:1023028207056. Acesso em: 15 nov. 2025.
    • APA

      Kira, E., Neves, E. J., & Schonmann, R. H. (1998). Percolation in a voronoi competition-growth model. Journal of Statistical Physics, 92( 5/6), 755-764. doi:10.1023/A:1023028207056
    • NLM

      Kira E, Neves EJ, Schonmann RH. Percolation in a voronoi competition-growth model [Internet]. Journal of Statistical Physics. 1998 ; 92( 5/6): 755-764.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1023/A:1023028207056
    • Vancouver

      Kira E, Neves EJ, Schonmann RH. Percolation in a voronoi competition-growth model [Internet]. Journal of Statistical Physics. 1998 ; 92( 5/6): 755-764.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1023/A:1023028207056
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PERCOLAÇÃO, PROCESSOS ALEATÓRIOS, AUTÔMATOS CELULARES, MECÂNICA ESTATÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHONMANN, Roberto Henrique. Critical points of two-dimensional bootstrap percolation-like cellular automata. Journal of Statistical Physics, v. 58, n. 5-6, p. 1239-1244, 1990Tradução . . Disponível em: https://doi.org/10.1007/BF01026574. Acesso em: 15 nov. 2025.
    • APA

      Schonmann, R. H. (1990). Critical points of two-dimensional bootstrap percolation-like cellular automata. Journal of Statistical Physics, 58( 5-6), 1239-1244. doi:10.1007/BF01026574
    • NLM

      Schonmann RH. Critical points of two-dimensional bootstrap percolation-like cellular automata [Internet]. Journal of Statistical Physics. 1990 ; 58( 5-6): 1239-1244.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/BF01026574
    • Vancouver

      Schonmann RH. Critical points of two-dimensional bootstrap percolation-like cellular automata [Internet]. Journal of Statistical Physics. 1990 ; 58( 5-6): 1239-1244.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/BF01026574
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, RETICULADOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHONMANN, Roberto Henrique e TANAKA, Nelson Ithiro. One-dimensional caricature of phase transition. Journal of Statistical Physics, v. 61, n. 1/2, p. 241-252, 1990Tradução . . Disponível em: https://doi.org/10.1007/BF01013963. Acesso em: 15 nov. 2025.
    • APA

      Schonmann, R. H., & Tanaka, N. I. (1990). One-dimensional caricature of phase transition. Journal of Statistical Physics, 61( 1/2), 241-252. doi:10.1007/BF01013963
    • NLM

      Schonmann RH, Tanaka NI. One-dimensional caricature of phase transition [Internet]. Journal of Statistical Physics. 1990 ; 61( 1/2): 241-252.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/BF01013963
    • Vancouver

      Schonmann RH, Tanaka NI. One-dimensional caricature of phase transition [Internet]. Journal of Statistical Physics. 1990 ; 61( 1/2): 241-252.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/BF01013963
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROBABILIDADE, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DURRETT, Richard e SCHONMANN, Roberto Henrique e TANAKA, Nelson Ithiro. Correlation lengths for oriented percolation. Journal of Statistical Physics, v. 55, p. 965-79, 1989Tradução . . Disponível em: https://doi.org/10.1007/bf01041074. Acesso em: 15 nov. 2025.
    • APA

      Durrett, R., Schonmann, R. H., & Tanaka, N. I. (1989). Correlation lengths for oriented percolation. Journal of Statistical Physics, 55, 965-79. doi:10.1007/bf01041074
    • NLM

      Durrett R, Schonmann RH, Tanaka NI. Correlation lengths for oriented percolation [Internet]. Journal of Statistical Physics. 1989 ;55 965-79.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01041074
    • Vancouver

      Durrett R, Schonmann RH, Tanaka NI. Correlation lengths for oriented percolation [Internet]. Journal of Statistical Physics. 1989 ;55 965-79.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01041074
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: MODELO DE POTTS, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHONMANN, Roberto Henrique. On two correlation inequalities for Potts models. Journal of Statistical Physics, v. 52, p. 61-7, 1988Tradução . . Disponível em: https://doi.org/10.1007/bf01016404. Acesso em: 15 nov. 2025.
    • APA

      Schonmann, R. H. (1988). On two correlation inequalities for Potts models. Journal of Statistical Physics, 52, 61-7. doi:10.1007/bf01016404
    • NLM

      Schonmann RH. On two correlation inequalities for Potts models [Internet]. Journal of Statistical Physics. 1988 ;52 61-7.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01016404
    • Vancouver

      Schonmann RH. On two correlation inequalities for Potts models [Internet]. Journal of Statistical Physics. 1988 ;52 61-7.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01016404
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, PERCOLAÇÃO, PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEBOWITZ, J L e SCHONMANN, Roberto Henrique. On the asymptotics of occurrence times of rare events for stochastic spin systems. Journal of Statistical Physics, v. 48, p. 727-51, 1987Tradução . . Disponível em: https://doi.org/10.1007/bf01019694. Acesso em: 15 nov. 2025.
    • APA

      Lebowitz, J. L., & Schonmann, R. H. (1987). On the asymptotics of occurrence times of rare events for stochastic spin systems. Journal of Statistical Physics, 48, 727-51. doi:10.1007/bf01019694
    • NLM

      Lebowitz JL, Schonmann RH. On the asymptotics of occurrence times of rare events for stochastic spin systems [Internet]. Journal of Statistical Physics. 1987 ;48 727-51.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01019694
    • Vancouver

      Lebowitz JL, Schonmann RH. On the asymptotics of occurrence times of rare events for stochastic spin systems [Internet]. Journal of Statistical Physics. 1987 ;48 727-51.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01019694
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHAYES, J T e CHAYES, L e SCHONMANN, Roberto Henrique. Exponential decay of connectivities in the two dimensional Ising model. Journal of Statistical Physics, v. 49, p. 433-45, 1987Tradução . . Disponível em: https://doi.org/10.1007/bf01009344. Acesso em: 15 nov. 2025.
    • APA

      Chayes, J. T., Chayes, L., & Schonmann, R. H. (1987). Exponential decay of connectivities in the two dimensional Ising model. Journal of Statistical Physics, 49, 433-45. doi:10.1007/bf01009344
    • NLM

      Chayes JT, Chayes L, Schonmann RH. Exponential decay of connectivities in the two dimensional Ising model [Internet]. Journal of Statistical Physics. 1987 ;49 433-45.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01009344
    • Vancouver

      Chayes JT, Chayes L, Schonmann RH. Exponential decay of connectivities in the two dimensional Ising model [Internet]. Journal of Statistical Physics. 1987 ;49 433-45.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01009344
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHONMANN, Roberto Henrique. Metastability for the contact process. Journal of Statistical Physics, v. 41, p. 445-464, 1985Tradução . . Disponível em: https://doi.org/10.1007/bf01009017. Acesso em: 15 nov. 2025.
    • APA

      Schonmann, R. H. (1985). Metastability for the contact process. Journal of Statistical Physics, 41, 445-464. doi:10.1007/bf01009017
    • NLM

      Schonmann RH. Metastability for the contact process [Internet]. Journal of Statistical Physics. 1985 ; 41 445-464.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01009017
    • Vancouver

      Schonmann RH. Metastability for the contact process [Internet]. Journal of Statistical Physics. 1985 ; 41 445-464.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01009017
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAMSON, M et al. Microscopic selection principle for diffusion-reaction equations. Journal of Statistical Physics, v. 45, p. 905-20, 1985Tradução . . Disponível em: https://doi.org/10.1007/bf01020581. Acesso em: 15 nov. 2025.
    • APA

      Bramson, M., Calderoni, P., De Masi, A., Ferrari, P. A., Lebowitz, J., & Schonmann, R. H. (1985). Microscopic selection principle for diffusion-reaction equations. Journal of Statistical Physics, 45, 905-20. doi:10.1007/bf01020581
    • NLM

      Bramson M, Calderoni P, De Masi A, Ferrari PA, Lebowitz J, Schonmann RH. Microscopic selection principle for diffusion-reaction equations [Internet]. Journal of Statistical Physics. 1985 ;45 905-20.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01020581
    • Vancouver

      Bramson M, Calderoni P, De Masi A, Ferrari PA, Lebowitz J, Schonmann RH. Microscopic selection principle for diffusion-reaction equations [Internet]. Journal of Statistical Physics. 1985 ;45 905-20.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf01020581

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025