Filtros : "Journal of Statistical Physics" "Löcherbach, Eva" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: NEURÔNIOS, SINAPSE, ESTATÍSTICA APLICADA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio et al. A system of interacting neurons with short term synaptic facilitation. Journal of Statistical Physics, v. 178, n. 4, p. 869-892, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10955-019-02467-1. Acesso em: 15 nov. 2025.
    • APA

      Galves, A., Löcherbach, E., Pouzat, C., & Presutti, E. (2020). A system of interacting neurons with short term synaptic facilitation. Journal of Statistical Physics, 178( 4), 869-892. doi:10.1007/s10955-019-02467-1
    • NLM

      Galves A, Löcherbach E, Pouzat C, Presutti E. A system of interacting neurons with short term synaptic facilitation [Internet]. Journal of Statistical Physics. 2020 ; 178( 4): 869-892.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-019-02467-1
    • Vancouver

      Galves A, Löcherbach E, Pouzat C, Presutti E. A system of interacting neurons with short term synaptic facilitation [Internet]. Journal of Statistical Physics. 2020 ; 178( 4): 869-892.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-019-02467-1
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio e LÖCHERBACH, Eva. Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets. Journal of Statistical Physics, v. 151, n. 5, p. 896-921, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10955-013-0733-9. Acesso em: 15 nov. 2025.
    • APA

      Galves, A., & Löcherbach, E. (2013). Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets. Journal of Statistical Physics, 151( 5), 896-921. doi:10.1007/s10955-013-0733-9
    • NLM

      Galves A, Löcherbach E. Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets [Internet]. Journal of Statistical Physics. 2013 ; 151( 5): 896-921.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-013-0733-9
    • Vancouver

      Galves A, Löcherbach E. Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets [Internet]. Journal of Statistical Physics. 2013 ; 151( 5): 896-921.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-013-0733-9
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASSANDRO, Marzio e GALVES, Antonio e LÖCHERBACH, Eva. Partially observed Markov random fields are variable neighborhood random fields. Journal of Statistical Physics, v. 147, n. 4, p. 795-807, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10955-012-0488-8. Acesso em: 15 nov. 2025.
    • APA

      Cassandro, M., Galves, A., & Löcherbach, E. (2012). Partially observed Markov random fields are variable neighborhood random fields. Journal of Statistical Physics, 147( 4), 795-807. doi:10.1007/s10955-012-0488-8
    • NLM

      Cassandro M, Galves A, Löcherbach E. Partially observed Markov random fields are variable neighborhood random fields [Internet]. Journal of Statistical Physics. 2012 ; 147( 4): 795-807.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-012-0488-8
    • Vancouver

      Cassandro M, Galves A, Löcherbach E. Partially observed Markov random fields are variable neighborhood random fields [Internet]. Journal of Statistical Physics. 2012 ; 147( 4): 795-807.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-012-0488-8
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio e LÖCHERBACH, Eva e ORLANDI, Enza. Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations. Journal of Statistical Physics, v. 138, n. 1-3, p. 476-495, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10955-009-9881-3. Acesso em: 15 nov. 2025.
    • APA

      Galves, A., Löcherbach, E., & Orlandi, E. (2010). Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations. Journal of Statistical Physics, 138( 1-3), 476-495. doi:10.1007/s10955-009-9881-3
    • NLM

      Galves A, Löcherbach E, Orlandi E. Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations [Internet]. Journal of Statistical Physics. 2010 ; 138( 1-3): 476-495.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-009-9881-3
    • Vancouver

      Galves A, Löcherbach E, Orlandi E. Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations [Internet]. Journal of Statistical Physics. 2010 ; 138( 1-3): 476-495.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-009-9881-3

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025