Filtros : "Journal of Number Theory" "Grichkov, Alexandre" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Number Theory. Unidade: IME

    Assuntos: DETERMINANTES, ÁLGEBRA COMPUTACIONAL

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e LOGACHEV, D e ZOBNIN, A. L-functions of Carlitz modules, resultantal varieties and rooted binary trees - I. Journal of Number Theory, v. 238, p. 269-312, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jnt.2021.08.013. Acesso em: 17 nov. 2025.
    • APA

      Grichkov, A., Logachev, D., & Zobnin, A. (2022). L-functions of Carlitz modules, resultantal varieties and rooted binary trees - I. Journal of Number Theory, 238, 269-312. doi:10.1016/j.jnt.2021.08.013
    • NLM

      Grichkov A, Logachev D, Zobnin A. L-functions of Carlitz modules, resultantal varieties and rooted binary trees - I [Internet]. Journal of Number Theory. 2022 ; 238 269-312.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.jnt.2021.08.013
    • Vancouver

      Grichkov A, Logachev D, Zobnin A. L-functions of Carlitz modules, resultantal varieties and rooted binary trees - I [Internet]. Journal of Number Theory. 2022 ; 238 269-312.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.jnt.2021.08.013
  • Fonte: Journal of Number Theory. Unidade: IME

    Assunto: GEOMETRIA ALGÉBRICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e LOGACHEV, D. h1 ≠ h1 for Anderson t-motives. Journal of Number Theory, v. 225, p. 59-89, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jnt.2021.01.020. Acesso em: 17 nov. 2025.
    • APA

      Grichkov, A., & Logachev, D. (2021). h1 ≠ h1 for Anderson t-motives. Journal of Number Theory, 225, 59-89. doi:10.1016/j.jnt.2021.01.020
    • NLM

      Grichkov A, Logachev D. h1 ≠ h1 for Anderson t-motives [Internet]. Journal of Number Theory. 2021 ; 225 59-89.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.jnt.2021.01.020
    • Vancouver

      Grichkov A, Logachev D. h1 ≠ h1 for Anderson t-motives [Internet]. Journal of Number Theory. 2021 ; 225 59-89.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.jnt.2021.01.020
  • Fonte: Journal of Number Theory. Unidade: IME

    Assuntos: TEORIA DOS NÚMEROS, GEOMETRIA ALGÉBRICA, VARIEDADES ABELIANAS, MULTIPLICAÇÃO COMPLEXA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e LOGACHEV, D. Lattice map for Anderson t-motives: First approach. Journal of Number Theory, v. 180, p. 373-402, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jnt.2017.04.004. Acesso em: 17 nov. 2025.
    • APA

      Grichkov, A., & Logachev, D. (2017). Lattice map for Anderson t-motives: First approach. Journal of Number Theory, 180, 373-402. doi:10.1016/j.jnt.2017.04.004
    • NLM

      Grichkov A, Logachev D. Lattice map for Anderson t-motives: First approach [Internet]. Journal of Number Theory. 2017 ; 180 373-402.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.jnt.2017.04.004
    • Vancouver

      Grichkov A, Logachev D. Lattice map for Anderson t-motives: First approach [Internet]. Journal of Number Theory. 2017 ; 180 373-402.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1016/j.jnt.2017.04.004

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025