Filtros : "Computers and Electronics in Agriculture" "MOLIN, JOSE PAULO" Limpar

Filtros



Refine with date range


  • Source: Computers and Electronics in Agriculture. Unidade: ESALQ

    Subjects: AGRICULTURA DE PRECISÃO, APRENDIZADO COMPUTACIONAL, CANA-DE-AÇÚCAR, SENSOR

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALDANER, Leonardo Felipe et al. A system for plant detection using sensor fusion approach based on machine learning model. Computers and Electronics in Agriculture, v. 189, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.compag.2021.106382. Acesso em: 15 nov. 2025.
    • APA

      Maldaner, L. F., Molin, J. P., Canata, T. F., & Martello, M. (2021). A system for plant detection using sensor fusion approach based on machine learning model. Computers and Electronics in Agriculture, 189, 1-11. doi:10.1016/j.compag.2021.106382
    • NLM

      Maldaner LF, Molin JP, Canata TF, Martello M. A system for plant detection using sensor fusion approach based on machine learning model [Internet]. Computers and Electronics in Agriculture. 2021 ; 189 1-11.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2021.106382
    • Vancouver

      Maldaner LF, Molin JP, Canata TF, Martello M. A system for plant detection using sensor fusion approach based on machine learning model [Internet]. Computers and Electronics in Agriculture. 2021 ; 189 1-11.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2021.106382
  • Source: Computers and Electronics in Agriculture. Unidade: ESALQ

    Subjects: AGRICULTURA DE PRECISÃO, COMPUTACIONAL, CANA-DE-AÇÚCAR, COLHEDORAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALDANER, Leonardo Felipe et al. Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches. Computers and Electronics in Agriculture, v. 181, p. 1-9, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.compag.2020.105945. Acesso em: 15 nov. 2025.
    • APA

      Maldaner, L. F., Corrêdo, L. de P., Canata, T. F., & Molin, J. P. (2021). Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches. Computers and Electronics in Agriculture, 181, 1-9. doi:10.1016/j.compag.2020.105945
    • NLM

      Maldaner LF, Corrêdo L de P, Canata TF, Molin JP. Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches [Internet]. Computers and Electronics in Agriculture. 2021 ; 181 1-9.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2020.105945
    • Vancouver

      Maldaner LF, Corrêdo L de P, Canata TF, Molin JP. Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches [Internet]. Computers and Electronics in Agriculture. 2021 ; 181 1-9.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2020.105945
  • Source: Computers and Electronics in Agriculture. Unidade: ESALQ

    Subjects: AGRICULTURA DE PRECISÃO, APRENDIZADO COMPUTACIONAL, CAFÉ, COLHEITA, MATURAÇÃO VEGETAL, REDES NEURAIS, VISÃO COMPUTACIONAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAZAME, Helizani Couto et al. Detection, classification, and mapping of coffee fruits during harvest with computer vision. Computers and Electronics in Agriculture, v. 183, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.compag.2021.106066. Acesso em: 15 nov. 2025.
    • APA

      Bazame, H. C., Molin, J. P., Althoff, D., & Martello, M. (2021). Detection, classification, and mapping of coffee fruits during harvest with computer vision. Computers and Electronics in Agriculture, 183, 1-11. doi:10.1016/j.compag.2021.106066
    • NLM

      Bazame HC, Molin JP, Althoff D, Martello M. Detection, classification, and mapping of coffee fruits during harvest with computer vision [Internet]. Computers and Electronics in Agriculture. 2021 ; 183 1-11.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2021.106066
    • Vancouver

      Bazame HC, Molin JP, Althoff D, Martello M. Detection, classification, and mapping of coffee fruits during harvest with computer vision [Internet]. Computers and Electronics in Agriculture. 2021 ; 183 1-11.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2021.106066
  • Source: Computers and Electronics in Agriculture. Unidade: ESALQ

    Subjects: COLHEITA, FRUTAS, HORTALIÇAS, MAPAS, PRODUTIVIDADE, SAFRA, VARIABILIDADE ESPACIAL

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLAÇO, A.F et al. Yield mapping methods for manually harvested crops. Computers and Electronics in Agriculture, v. 177, p. 1-14, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.compag.2020.105693. Acesso em: 15 nov. 2025.
    • APA

      Colaço, A. F., Trevisan, R. G., Karp, F. H. S., & Molin, J. P. (2020). Yield mapping methods for manually harvested crops. Computers and Electronics in Agriculture, 177, 1-14. doi:10.1016/j.compag.2020.105693
    • NLM

      Colaço AF, Trevisan RG, Karp FHS, Molin JP. Yield mapping methods for manually harvested crops [Internet]. Computers and Electronics in Agriculture. 2020 ; 177 1-14.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2020.105693
    • Vancouver

      Colaço AF, Trevisan RG, Karp FHS, Molin JP. Yield mapping methods for manually harvested crops [Internet]. Computers and Electronics in Agriculture. 2020 ; 177 1-14.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2020.105693
  • Source: Computers and Electronics in Agriculture. Unidade: ESALQ

    Subjects: SISTEMA DE INFORMAÇÃO GEOGRÁFICA, ESCOAMENTO, EROSÃO, CULTIVO EM FAIXA, MÁQUINAS AGRÍCOLAS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPEKKEN, Mark et al. Planning machine paths and row crop patterns on steep surfaces to minimize soil erosion. Computers and Electronics in Agriculture, v. 124, p. 194–210, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.compag.2016.03.013. Acesso em: 15 nov. 2025.
    • APA

      Spekken, M., Bruin, S. de, Molin, J. P., & Sparovek, G. (2016). Planning machine paths and row crop patterns on steep surfaces to minimize soil erosion. Computers and Electronics in Agriculture, 124, 194–210. doi:10.1016/j.compag.2016.03.013
    • NLM

      Spekken M, Bruin S de, Molin JP, Sparovek G. Planning machine paths and row crop patterns on steep surfaces to minimize soil erosion [Internet]. Computers and Electronics in Agriculture. 2016 ; 124 194–210.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2016.03.013
    • Vancouver

      Spekken M, Bruin S de, Molin JP, Sparovek G. Planning machine paths and row crop patterns on steep surfaces to minimize soil erosion [Internet]. Computers and Electronics in Agriculture. 2016 ; 124 194–210.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2016.03.013

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025