Filtros : "Computers and Electronics in Agriculture" "CANATA, TATIANA FERNANDA" Limpar

Filtros



Limitar por data


  • Fonte: Computers and Electronics in Agriculture. Unidade: ESALQ

    Assuntos: AGRICULTURA DE PRECISÃO, APRENDIZADO COMPUTACIONAL, CANA-DE-AÇÚCAR, SENSOR

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALDANER, Leonardo Felipe et al. A system for plant detection using sensor fusion approach based on machine learning model. Computers and Electronics in Agriculture, v. 189, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.compag.2021.106382. Acesso em: 15 nov. 2025.
    • APA

      Maldaner, L. F., Molin, J. P., Canata, T. F., & Martello, M. (2021). A system for plant detection using sensor fusion approach based on machine learning model. Computers and Electronics in Agriculture, 189, 1-11. doi:10.1016/j.compag.2021.106382
    • NLM

      Maldaner LF, Molin JP, Canata TF, Martello M. A system for plant detection using sensor fusion approach based on machine learning model [Internet]. Computers and Electronics in Agriculture. 2021 ; 189 1-11.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2021.106382
    • Vancouver

      Maldaner LF, Molin JP, Canata TF, Martello M. A system for plant detection using sensor fusion approach based on machine learning model [Internet]. Computers and Electronics in Agriculture. 2021 ; 189 1-11.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2021.106382
  • Fonte: Computers and Electronics in Agriculture. Unidade: ESALQ

    Assuntos: AGRICULTURA DE PRECISÃO, COMPUTACIONAL, CANA-DE-AÇÚCAR, COLHEDORAS

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALDANER, Leonardo Felipe et al. Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches. Computers and Electronics in Agriculture, v. 181, p. 1-9, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.compag.2020.105945. Acesso em: 15 nov. 2025.
    • APA

      Maldaner, L. F., Corrêdo, L. de P., Canata, T. F., & Molin, J. P. (2021). Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches. Computers and Electronics in Agriculture, 181, 1-9. doi:10.1016/j.compag.2020.105945
    • NLM

      Maldaner LF, Corrêdo L de P, Canata TF, Molin JP. Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches [Internet]. Computers and Electronics in Agriculture. 2021 ; 181 1-9.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2020.105945
    • Vancouver

      Maldaner LF, Corrêdo L de P, Canata TF, Molin JP. Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches [Internet]. Computers and Electronics in Agriculture. 2021 ; 181 1-9.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.compag.2020.105945

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025