Filtros : "Chemical Engineering Research and Design" "Financiamento FAPESP" Limpar

Filtros



Refine with date range


  • Source: Chemical Engineering Research and Design. Unidade: IQ

    Subjects: NANOPARTÍCULAS, LANTANÍDIOS, OURO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMA, Henrique Eisi. Magnetic nanohydrometallurgy: principles and concepts applied to metal ion separation and recovery. Chemical Engineering Research and Design, v. 216, p. 251–269, 2025Tradução . . Disponível em: https://dx.doi.org/10.1016/j.cherd.2025.03.003. Acesso em: 10 nov. 2025.
    • APA

      Toma, H. E. (2025). Magnetic nanohydrometallurgy: principles and concepts applied to metal ion separation and recovery. Chemical Engineering Research and Design, 216, 251–269. doi:10.1016/j.cherd.2025.03.003
    • NLM

      Toma HE. Magnetic nanohydrometallurgy: principles and concepts applied to metal ion separation and recovery [Internet]. Chemical Engineering Research and Design. 2025 ; 216 251–269.[citado 2025 nov. 10 ] Available from: https://dx.doi.org/10.1016/j.cherd.2025.03.003
    • Vancouver

      Toma HE. Magnetic nanohydrometallurgy: principles and concepts applied to metal ion separation and recovery [Internet]. Chemical Engineering Research and Design. 2025 ; 216 251–269.[citado 2025 nov. 10 ] Available from: https://dx.doi.org/10.1016/j.cherd.2025.03.003
  • Source: Chemical Engineering Research and Design. Unidade: FCF

    Subjects: QUÍMICA VERDE, CINÉTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Renan Rodrigues de Oliveira et al. Improvements to the Pioglitazone synthetic route using microreactor technology and aspects of green chemistry. Chemical Engineering Research and Design, v. 218, p. 697-706, 2025Tradução . . Disponível em: https://dx.doi.org/10.1016/j.cherd.2025.05.002. Acesso em: 10 nov. 2025.
    • APA

      Silva, R. R. de O., Meira, P. A., Merfels, C. A., & Palma, M. S. A. (2025). Improvements to the Pioglitazone synthetic route using microreactor technology and aspects of green chemistry. Chemical Engineering Research and Design, 218, 697-706. doi:10.1016/j.cherd.2025.05.002
    • NLM

      Silva RR de O, Meira PA, Merfels CA, Palma MSA. Improvements to the Pioglitazone synthetic route using microreactor technology and aspects of green chemistry [Internet]. Chemical Engineering Research and Design. 2025 ; 218 697-706.[citado 2025 nov. 10 ] Available from: https://dx.doi.org/10.1016/j.cherd.2025.05.002
    • Vancouver

      Silva RR de O, Meira PA, Merfels CA, Palma MSA. Improvements to the Pioglitazone synthetic route using microreactor technology and aspects of green chemistry [Internet]. Chemical Engineering Research and Design. 2025 ; 218 697-706.[citado 2025 nov. 10 ] Available from: https://dx.doi.org/10.1016/j.cherd.2025.05.002
  • Source: Chemical Engineering Research and Design. Unidade: EP

    Subjects: FOTOCATÁLISE, COMPOSTOS ORGÂNICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUSMÃO, Carolina de Araújo et al. Optimization of TiO2/SiO2 photocatalysts in a LED-irradiated gas-solid photoreactor for air treatment. Chemical Engineering Research and Design, v. 185, p. 223-238, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cherd.2022.07.001. Acesso em: 10 nov. 2025.
    • APA

      Gusmão, C. de A., Diniz, L. A., Ramos, B., Câmara, A. G., Pacheco, J. G. A., & Teixeira, A. C. S. C. (2022). Optimization of TiO2/SiO2 photocatalysts in a LED-irradiated gas-solid photoreactor for air treatment. Chemical Engineering Research and Design, 185, 223-238. doi:10.1016/j.cherd.2022.07.001
    • NLM

      Gusmão C de A, Diniz LA, Ramos B, Câmara AG, Pacheco JGA, Teixeira ACSC. Optimization of TiO2/SiO2 photocatalysts in a LED-irradiated gas-solid photoreactor for air treatment [Internet]. Chemical Engineering Research and Design. 2022 ; 185 223-238.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cherd.2022.07.001
    • Vancouver

      Gusmão C de A, Diniz LA, Ramos B, Câmara AG, Pacheco JGA, Teixeira ACSC. Optimization of TiO2/SiO2 photocatalysts in a LED-irradiated gas-solid photoreactor for air treatment [Internet]. Chemical Engineering Research and Design. 2022 ; 185 223-238.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cherd.2022.07.001
  • Source: Chemical Engineering Research and Design. Unidade: EP

    Subjects: MODELOS MATEMÁTICOS, MODELOS NÃO LINEARES, PROCESSOS CONTÍNUOS, SOFTWARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRANZOI, Robert E et al. A moving horizon rescheduling framework for continuous nonlinear processes with disturbances. Chemical Engineering Research and Design, v. 174, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cherd.2021.08.007. Acesso em: 10 nov. 2025.
    • APA

      Franzoi, R. E., Menezes, B. C., Kelly, J. D., & Gut, J. A. W. (2021). A moving horizon rescheduling framework for continuous nonlinear processes with disturbances. Chemical Engineering Research and Design, 174. doi:10.1016/j.cherd.2021.08.007
    • NLM

      Franzoi RE, Menezes BC, Kelly JD, Gut JAW. A moving horizon rescheduling framework for continuous nonlinear processes with disturbances [Internet]. Chemical Engineering Research and Design. 2021 ; 174[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cherd.2021.08.007
    • Vancouver

      Franzoi RE, Menezes BC, Kelly JD, Gut JAW. A moving horizon rescheduling framework for continuous nonlinear processes with disturbances [Internet]. Chemical Engineering Research and Design. 2021 ; 174[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.cherd.2021.08.007

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025