Filtros : "Biotechnology and Bioengineering" "BIOQUÍMICA" Limpar

Filtros



Limitar por data


  • Fonte: Biotechnology and Bioengineering. Unidade: FCF

    Assuntos: BIOTECNOLOGIA, ENZIMAS, PROTEÍNAS, BIOQUÍMICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RANGEL-YAGUI, Carlota de Oliveira et al. Glucose-6-phosphate dehydrogenase partitioning in two-phase aqueous mixed (nonionic/cationic) micellar systems. Biotechnology and Bioengineering, v. 82, n. 4, p. 445-456, 2003Tradução . . Disponível em: https://doi.org/10.1002/bit.10586. Acesso em: 12 nov. 2025.
    • APA

      Rangel-Yagui, C. de O., Lam, H., Kamei, D. T., Wang, D. I. C., Pessoa Junior, A., & Blankschtein, D. (2003). Glucose-6-phosphate dehydrogenase partitioning in two-phase aqueous mixed (nonionic/cationic) micellar systems. Biotechnology and Bioengineering, 82( 4), 445-456. doi:10.1002/bit.10586
    • NLM

      Rangel-Yagui C de O, Lam H, Kamei DT, Wang DIC, Pessoa Junior A, Blankschtein D. Glucose-6-phosphate dehydrogenase partitioning in two-phase aqueous mixed (nonionic/cationic) micellar systems [Internet]. Biotechnology and Bioengineering. 2003 ; 82( 4): 445-456.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1002/bit.10586
    • Vancouver

      Rangel-Yagui C de O, Lam H, Kamei DT, Wang DIC, Pessoa Junior A, Blankschtein D. Glucose-6-phosphate dehydrogenase partitioning in two-phase aqueous mixed (nonionic/cationic) micellar systems [Internet]. Biotechnology and Bioengineering. 2003 ; 82( 4): 445-456.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1002/bit.10586
  • Fonte: Biotechnology and Bioengineering. Unidade: FCF

    Assuntos: BIOTECNOLOGIA, SACCHAROMYCES, FERMENTAÇÃO ALCOÓLICA, BIOQUÍMICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CONVERTI, Attilio et al. Simplified modeling of fed-batch alcoholic fermentation of sugarcane blackstrap molasses. Biotechnology and Bioengineering, v. 84, n. 1, p. 88-95, 2003Tradução . . Disponível em: https://doi.org/10.1002/bit.10750. Acesso em: 12 nov. 2025.
    • APA

      Converti, A., Arni, S., Sato, S., Carvalho, J. C. M. de, & Aquarone, E. (2003). Simplified modeling of fed-batch alcoholic fermentation of sugarcane blackstrap molasses. Biotechnology and Bioengineering, 84( 1), 88-95. doi:10.1002/bit.10750
    • NLM

      Converti A, Arni S, Sato S, Carvalho JCM de, Aquarone E. Simplified modeling of fed-batch alcoholic fermentation of sugarcane blackstrap molasses [Internet]. Biotechnology and Bioengineering. 2003 ; 84( 1): 88-95.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1002/bit.10750
    • Vancouver

      Converti A, Arni S, Sato S, Carvalho JCM de, Aquarone E. Simplified modeling of fed-batch alcoholic fermentation of sugarcane blackstrap molasses [Internet]. Biotechnology and Bioengineering. 2003 ; 84( 1): 88-95.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1002/bit.10750
  • Fonte: Biotechnology and Bioengineering. Unidade: FCF

    Assuntos: CANA-DE-AÇÚCAR, BIOTECNOLOGIA, FERMENTAÇÃO, CANDIDA, BIOQUÍMICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Walter et al. Metabolic Behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnology and Bioengineering, v. 79, n. 2, p. 165-169, 2002Tradução . . Disponível em: https://doi.org/10.1002/bit.10319. Acesso em: 12 nov. 2025.
    • APA

      Carvalho, W., Silva, S. S. da, Converti, A., & Vitolo, M. (2002). Metabolic Behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnology and Bioengineering, 79( 2), 165-169. doi:10.1002/bit.10319
    • NLM

      Carvalho W, Silva SS da, Converti A, Vitolo M. Metabolic Behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate [Internet]. Biotechnology and Bioengineering. 2002 ; 79( 2): 165-169.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1002/bit.10319
    • Vancouver

      Carvalho W, Silva SS da, Converti A, Vitolo M. Metabolic Behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate [Internet]. Biotechnology and Bioengineering. 2002 ; 79( 2): 165-169.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1002/bit.10319
  • Fonte: Biotechnology and Bioengineering. Unidade: EP

    Assuntos: BIOTECNOLOGIA, BIOQUÍMICA, ENGENHARIA, MICROBIOLOGIA

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHRISTENSEN, Bjarke et al. Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway in microorganisms. Biotechnology and Bioengineering, v. 74, n. 6, p. 517-523, 2001Tradução . . Disponível em: https://doi.org/10.1002/bit.1143. Acesso em: 12 nov. 2025.
    • APA

      Christensen, B., Christiansen, T., Gombert, A. K., Thykaer, J., & Nielsen, J. (2001). Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway in microorganisms. Biotechnology and Bioengineering, 74( 6), 517-523. doi:10.1002/bit.1143
    • NLM

      Christensen B, Christiansen T, Gombert AK, Thykaer J, Nielsen J. Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway in microorganisms [Internet]. Biotechnology and Bioengineering. 2001 ; 74( 6): 517-523.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1002/bit.1143
    • Vancouver

      Christensen B, Christiansen T, Gombert AK, Thykaer J, Nielsen J. Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway in microorganisms [Internet]. Biotechnology and Bioengineering. 2001 ; 74( 6): 517-523.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1002/bit.1143
  • Fonte: Biotechnology and Bioengineering. Unidade: IQ

    Assuntos: BIOQUÍMICA, BIOTECNOLOGIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DINIZ-MENDES, L. et al. Preservation of frozen yeast cells by trehalose. Biotechnology and Bioengineering, v. 65, n. 5, p. 572-578, 1999Tradução . . Disponível em: https://doi.org/10.1002/(sici)1097-0290(19991205)65:5%3C572::aid-bit10%3E3.0.co;2-7. Acesso em: 12 nov. 2025.
    • APA

      Diniz-Mendes, L., Bernardes, E., De Araujo, P. S., Panek, A. D., & Paschoalin, V. M. F. (1999). Preservation of frozen yeast cells by trehalose. Biotechnology and Bioengineering, 65( 5), 572-578. doi:10.1002/(sici)1097-0290(19991205)65:5%3C572::aid-bit10%3E3.0.co;2-7
    • NLM

      Diniz-Mendes L, Bernardes E, De Araujo PS, Panek AD, Paschoalin VMF. Preservation of frozen yeast cells by trehalose [Internet]. Biotechnology and Bioengineering. 1999 ; 65( 5): 572-578.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1002/(sici)1097-0290(19991205)65:5%3C572::aid-bit10%3E3.0.co;2-7
    • Vancouver

      Diniz-Mendes L, Bernardes E, De Araujo PS, Panek AD, Paschoalin VMF. Preservation of frozen yeast cells by trehalose [Internet]. Biotechnology and Bioengineering. 1999 ; 65( 5): 572-578.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1002/(sici)1097-0290(19991205)65:5%3C572::aid-bit10%3E3.0.co;2-7
  • Fonte: Biotechnology and Bioengineering. Unidade: IQ

    Assunto: BIOQUÍMICA

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA, F C L e VALENTE, A P e CHAIMOVICH GURALNIK, Hernan. Stability and activity modulation of chymotrypsin in AOT reserved micelles by protein-interface interaction of ALPHA-chymotrypsin with a negative interface leads to cooperative breakage of a salt bridge that keeps the catalytic active conformation [ILe (16) - Asp(194)]. Biotechnology and Bioengineering, v. 59, p. 360-3, 1998Tradução . . Acesso em: 12 nov. 2025.
    • APA

      Almeida, F. C. L., Valente, A. P., & Chaimovich Guralnik, H. (1998). Stability and activity modulation of chymotrypsin in AOT reserved micelles by protein-interface interaction of ALPHA-chymotrypsin with a negative interface leads to cooperative breakage of a salt bridge that keeps the catalytic active conformation [ILe (16) - Asp(194)]. Biotechnology and Bioengineering, 59, 360-3.
    • NLM

      Almeida FCL, Valente AP, Chaimovich Guralnik H. Stability and activity modulation of chymotrypsin in AOT reserved micelles by protein-interface interaction of ALPHA-chymotrypsin with a negative interface leads to cooperative breakage of a salt bridge that keeps the catalytic active conformation [ILe (16) - Asp(194)]. Biotechnology and Bioengineering. 1998 ; 59 360-3.[citado 2025 nov. 12 ]
    • Vancouver

      Almeida FCL, Valente AP, Chaimovich Guralnik H. Stability and activity modulation of chymotrypsin in AOT reserved micelles by protein-interface interaction of ALPHA-chymotrypsin with a negative interface leads to cooperative breakage of a salt bridge that keeps the catalytic active conformation [ILe (16) - Asp(194)]. Biotechnology and Bioengineering. 1998 ; 59 360-3.[citado 2025 nov. 12 ]

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025