Filtros : "WOLF, DENIS FERNANDO" "Engineering Applications of Artificial Intelligence" Removido: "SISTEMAS EMBUTIDOS" Limpar

Filtros



Refine with date range


  • Source: Engineering Applications of Artificial Intelligence. Unidades: EESC, ICMC

    Subjects: TOMADA DE DECISÃO, ANÁLISE DE DESEMPENHO, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMURA, Angelica Tiemi Mizuno e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation. Engineering Applications of Artificial Intelligence, v. 100, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.engappai.2021.104205. Acesso em: 27 nov. 2025.
    • APA

      Nakamura, A. T. M., Grassi Júnior, V., & Wolf, D. F. (2021). An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation. Engineering Applications of Artificial Intelligence, 100, 1-10. doi:10.1016/j.engappai.2021.104205
    • NLM

      Nakamura ATM, Grassi Júnior V, Wolf DF. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation [Internet]. Engineering Applications of Artificial Intelligence. 2021 ; 100 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2021.104205
    • Vancouver

      Nakamura ATM, Grassi Júnior V, Wolf DF. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation [Internet]. Engineering Applications of Artificial Intelligence. 2021 ; 100 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2021.104205

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025