Filtros : "WOLF, DENIS FERNANDO" "Engineering Applications of Artificial Intelligence" Limpar

Filtros



Refine with date range


  • Source: Engineering Applications of Artificial Intelligence. Unidades: EESC, ICMC

    Subjects: TOMADA DE DECISÃO, ANÁLISE DE DESEMPENHO, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMURA, Angelica Tiemi Mizuno e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation. Engineering Applications of Artificial Intelligence, v. 100, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.engappai.2021.104205. Acesso em: 27 nov. 2025.
    • APA

      Nakamura, A. T. M., Grassi Júnior, V., & Wolf, D. F. (2021). An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation. Engineering Applications of Artificial Intelligence, 100, 1-10. doi:10.1016/j.engappai.2021.104205
    • NLM

      Nakamura ATM, Grassi Júnior V, Wolf DF. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation [Internet]. Engineering Applications of Artificial Intelligence. 2021 ; 100 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2021.104205
    • Vancouver

      Nakamura ATM, Grassi Júnior V, Wolf DF. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation [Internet]. Engineering Applications of Artificial Intelligence. 2021 ; 100 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2021.104205
  • Source: Engineering Applications of Artificial Intelligence. Unidade: ICMC

    Subjects: SISTEMAS EMBUTIDOS, COMPUTAÇÃO EVOLUTIVA, ROBÓTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALES, Daniel Oliva et al. Adaptive finite state machine based visual autonomous navigation system. Engineering Applications of Artificial Intelligence, v. 29, p. 152-162, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.engappai.2013.12.006. Acesso em: 27 nov. 2025.
    • APA

      Sales, D. O., Correa, D. O., Fernandes, L. C., Wolf, D. F., & Osório, F. S. (2014). Adaptive finite state machine based visual autonomous navigation system. Engineering Applications of Artificial Intelligence, 29, 152-162. doi:10.1016/j.engappai.2013.12.006
    • NLM

      Sales DO, Correa DO, Fernandes LC, Wolf DF, Osório FS. Adaptive finite state machine based visual autonomous navigation system [Internet]. Engineering Applications of Artificial Intelligence. 2014 ; 29 152-162.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2013.12.006
    • Vancouver

      Sales DO, Correa DO, Fernandes LC, Wolf DF, Osório FS. Adaptive finite state machine based visual autonomous navigation system [Internet]. Engineering Applications of Artificial Intelligence. 2014 ; 29 152-162.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2013.12.006

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025