Filtros : "PROCESSOS DE RAMIFICAÇÃO" "Universidade Federal de Goiás (UFG)" Limpar

Filtros



Limitar por data


  • Fonte: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assuntos: PROCESSOS ALEATÓRIOS, PROCESSOS DE RAMIFICAÇÃO, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JUNIOR, Valdivino V. e MACHADO, Fábio Prates e RAVISHANKAR, Krishnamurthi. The cone percolation model on Galton–Watson and on spherically symmetric trees. Brazilian Journal of Probability and Statistics, v. 34, n. 3, p. 594-612, 2020Tradução . . Disponível em: https://doi.org/10.1214/19-BJPS441. Acesso em: 23 nov. 2025.
    • APA

      Junior, V. V., Machado, F. P., & Ravishankar, K. (2020). The cone percolation model on Galton–Watson and on spherically symmetric trees. Brazilian Journal of Probability and Statistics, 34( 3), 594-612. doi:10.1214/19-BJPS441
    • NLM

      Junior VV, Machado FP, Ravishankar K. The cone percolation model on Galton–Watson and on spherically symmetric trees [Internet]. Brazilian Journal of Probability and Statistics. 2020 ; 34( 3): 594-612.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1214/19-BJPS441
    • Vancouver

      Junior VV, Machado FP, Ravishankar K. The cone percolation model on Galton–Watson and on spherically symmetric trees [Internet]. Brazilian Journal of Probability and Statistics. 2020 ; 34( 3): 594-612.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1214/19-BJPS441
  • Fonte: Bulletin of the Brazilian Mathematical Society, New Series. Unidade: IME

    Assuntos: PROBABILIDADE, PROCESSOS DE MARKOV, PROCESSOS DE RAMIFICAÇÃO, PASSEIOS ALEATÓRIOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Oswaldo Scarpa Magalhães et al. Random walks systems on complete graphs. Bulletin of the Brazilian Mathematical Society, New Series, v. 37, n. 4, p. 571-580, 2006Tradução . . Disponível em: https://doi.org/10.1007/s00574-006-0028-8. Acesso em: 23 nov. 2025.
    • APA

      Alves, O. S. M., Lebensztayn, E., Machado, F. P., & Martinez, M. Z. (2006). Random walks systems on complete graphs. Bulletin of the Brazilian Mathematical Society, New Series, 37( 4), 571-580. doi:10.1007/s00574-006-0028-8
    • NLM

      Alves OSM, Lebensztayn E, Machado FP, Martinez MZ. Random walks systems on complete graphs [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2006 ; 37( 4): 571-580.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s00574-006-0028-8
    • Vancouver

      Alves OSM, Lebensztayn E, Machado FP, Martinez MZ. Random walks systems on complete graphs [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2006 ; 37( 4): 571-580.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s00574-006-0028-8

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025