Filtros : "EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS" "FFCLRP" Removido: "Communications in Nonlinear Science and Numerical Simulation" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SEMIGRUPOS DE OPERADORES LINEARES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e FERNANDES, Denis e WU, Jianhong. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, v. No 2021, p. 753-806, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.09.014. Acesso em: 05 dez. 2025.
    • APA

      Hernandez, E., Fernandes, D., & Wu, J. (2021). Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, No 2021, 753-806. doi:10.1016/j.jde.2021.09.014
    • NLM

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
    • Vancouver

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
  • Source: Proceedings of the American Mathematical Society. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNÁNDEZ, Eduardo e WU, Jianhong. Travelling wave front for partial neutral differential equations. Proceedings of the American Mathematical Society, v. 146, n. 4, p. 1603-1617, 2018Tradução . . Disponível em: https://doi.org/10.1090/proc/13824. Acesso em: 05 dez. 2025.
    • APA

      Hernández, E., & Wu, J. (2018). Travelling wave front for partial neutral differential equations. Proceedings of the American Mathematical Society, 146( 4), 1603-1617. doi:10.1090/proc/13824
    • NLM

      Hernández E, Wu J. Travelling wave front for partial neutral differential equations [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 4): 1603-1617.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1090/proc/13824
    • Vancouver

      Hernández E, Wu J. Travelling wave front for partial neutral differential equations [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 4): 1603-1617.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1090/proc/13824
  • Source: Nonlinear Analysis. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, M. e EBERT, Marcelo Rempel. An application of Lp - Lq decay estimates to the semi-linear wave equation with parabolic-like structural damping. Nonlinear Analysis, v. 99, p. 16-34, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.na.2013.12.021. Acesso em: 05 dez. 2025.
    • APA

      D'Abbicco, M., & Ebert, M. R. (2014). An application of Lp - Lq decay estimates to the semi-linear wave equation with parabolic-like structural damping. Nonlinear Analysis, 99, 16-34. doi:10.1016/j.na.2013.12.021
    • NLM

      D'Abbicco M, Ebert MR. An application of Lp - Lq decay estimates to the semi-linear wave equation with parabolic-like structural damping [Internet]. Nonlinear Analysis. 2014 ; 99 16-34.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2013.12.021
    • Vancouver

      D'Abbicco M, Ebert MR. An application of Lp - Lq decay estimates to the semi-linear wave equation with parabolic-like structural damping [Internet]. Nonlinear Analysis. 2014 ; 99 16-34.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2013.12.021

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025