Filtros : "EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS" "Electronic Journal of Differential Equations" Removido: "Communications in Nonlinear Science and Numerical Simulation" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Pricila S. e PEREIRA, Antônio Luiz. Continuity of attractors for C1 perturbations of a smooth domain. Electronic Journal of Differential Equations, n. 97, p. 1-31, 2020Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf. Acesso em: 05 dez. 2025.
    • APA

      Barbosa, P. S., & Pereira, A. L. (2020). Continuity of attractors for C1 perturbations of a smooth domain. Electronic Journal of Differential Equations, ( 97), 1-31. Recuperado de https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf
    • NLM

      Barbosa PS, Pereira AL. Continuity of attractors for C1 perturbations of a smooth domain [Internet]. Electronic Journal of Differential Equations. 2020 ;( 97): 1-31.[citado 2025 dez. 05 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf
    • Vancouver

      Barbosa PS, Pereira AL. Continuity of attractors for C1 perturbations of a smooth domain [Internet]. Electronic Journal of Differential Equations. 2020 ;( 97): 1-31.[citado 2025 dez. 05 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf
  • Source: Electronic Journal of Differential Equations. Unidades: IME, EACH

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Luís Augusto Fernandes de e PEREIRA, Antônio Luiz e PEREIRA, Marcone Corrêa. Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain. Electronic Journal of Differential Equations, v. 100, p. 1-18, 2005Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2005/100/oliveira.pdf. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, L. A. F. de, Pereira, A. L., & Pereira, M. C. (2005). Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain. Electronic Journal of Differential Equations, 100, 1-18. Recuperado de https://ejde.math.txstate.edu/Volumes/2005/100/oliveira.pdf
    • NLM

      Oliveira LAF de, Pereira AL, Pereira MC. Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain [Internet]. Electronic Journal of Differential Equations. 2005 ; 100 1-18.[citado 2025 dez. 05 ] Available from: https://ejde.math.txstate.edu/Volumes/2005/100/oliveira.pdf
    • Vancouver

      Oliveira LAF de, Pereira AL, Pereira MC. Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain [Internet]. Electronic Journal of Differential Equations. 2005 ; 100 1-18.[citado 2025 dez. 05 ] Available from: https://ejde.math.txstate.edu/Volumes/2005/100/oliveira.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Luiz Augusto F. de. On reaction-diffusion systems. Electronic Journal of Differential Equations, v. 1998, n. 24, p. 1-10, 1998Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/1998/24/Oliveira.pdf. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, L. A. F. de. (1998). On reaction-diffusion systems. Electronic Journal of Differential Equations, 1998( 24), 1-10. Recuperado de https://ejde.math.txstate.edu/Volumes/1998/24/Oliveira.pdf
    • NLM

      Oliveira LAF de. On reaction-diffusion systems [Internet]. Electronic Journal of Differential Equations. 1998 ; 1998( 24): 1-10.[citado 2025 dez. 05 ] Available from: https://ejde.math.txstate.edu/Volumes/1998/24/Oliveira.pdf
    • Vancouver

      Oliveira LAF de. On reaction-diffusion systems [Internet]. Electronic Journal of Differential Equations. 1998 ; 1998( 24): 1-10.[citado 2025 dez. 05 ] Available from: https://ejde.math.txstate.edu/Volumes/1998/24/Oliveira.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025