Filtros : "EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS" "Financiado pela CAPES" Removido: "Communications in Nonlinear Science and Numerical Simulation" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, v. 32, n. 1, p. 359-390, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9720-9. Acesso em: 06 dez. 2025.
    • APA

      Lappicy, P. (2020). Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, 32( 1), 359-390. doi:10.1007/s10884-018-9720-9
    • NLM

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
    • Vancouver

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LI, Yanan et al. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, v. No 2020, n. 11, p. 5181-5196, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020232. Acesso em: 06 dez. 2025.
    • APA

      Li, Y., Carvalho, A. N. de, Luna, T. L. M., & Moreira, E. M. (2020). A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, No 2020( 11), 5181-5196. doi:10.3934/cpaa.2020232
    • NLM

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/cpaa.2020232
    • Vancouver

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/cpaa.2020232
  • Source: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M e CÓNSUL, Neus e OLIVA, Sérgio Muniz. Cascades of Hopf bifurcations from boundary delay. Journal of Mathematical Analysis and its Applications, v. 361, n. 1, p. 19-37, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2009.09.018. Acesso em: 06 dez. 2025.
    • APA

      Arrieta, J. M., Cónsul, N., & Oliva, S. M. (2010). Cascades of Hopf bifurcations from boundary delay. Journal of Mathematical Analysis and its Applications, 361( 1), 19-37. doi:10.1016/j.jmaa.2009.09.018
    • NLM

      Arrieta JM, Cónsul N, Oliva SM. Cascades of Hopf bifurcations from boundary delay [Internet]. Journal of Mathematical Analysis and its Applications. 2010 ; 361( 1): 19-37.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1016/j.jmaa.2009.09.018
    • Vancouver

      Arrieta JM, Cónsul N, Oliva SM. Cascades of Hopf bifurcations from boundary delay [Internet]. Journal of Mathematical Analysis and its Applications. 2010 ; 361( 1): 19-37.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1016/j.jmaa.2009.09.018

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025