A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MENDES, Mayara Ferreira et al. May we improve trapping of drosophilid species (Insecta, Diptera)? A review of sampling protocols in Brazilian biomes. Community Ecology, 2025Tradução . . Acesso em: 13 dez. 2025.
APA
Mendes, M. F., Lamas, C. J. E., Carvalho, D. A., Valente-Gayesky, V. L. da S., & Gottschalk, M. S. (2025). May we improve trapping of drosophilid species (Insecta, Diptera)? A review of sampling protocols in Brazilian biomes. Community Ecology. doi:10.1007/s42974-024-00214-5
NLM
Mendes MF, Lamas CJE, Carvalho DA, Valente-Gayesky VL da S, Gottschalk MS. May we improve trapping of drosophilid species (Insecta, Diptera)? A review of sampling protocols in Brazilian biomes. Community Ecology. 2025 ;[citado 2025 dez. 13 ]
Vancouver
Mendes MF, Lamas CJE, Carvalho DA, Valente-Gayesky VL da S, Gottschalk MS. May we improve trapping of drosophilid species (Insecta, Diptera)? A review of sampling protocols in Brazilian biomes. Community Ecology. 2025 ;[citado 2025 dez. 13 ]
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MILANI, Diogo et al. Variable organization of repeats and hidden diversity of XY sex chromosomes in Pentatomidae true Bugs (Hemiptera) revealed through comparative genomic hybridization. Chromosoma, v. 134, p. 1-13, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00412-025-00831-7. Acesso em: 13 dez. 2025.
APA
Milani, D., Bardella, V. B., Hickmann, F., Corrêa, A. S., Michel, A. P., Mora, P., et al. (2025). Variable organization of repeats and hidden diversity of XY sex chromosomes in Pentatomidae true Bugs (Hemiptera) revealed through comparative genomic hybridization. Chromosoma, 134, 1-13. doi:10.1007/s00412-025-00831-7
NLM
Milani D, Bardella VB, Hickmann F, Corrêa AS, Michel AP, Mora P, Rico-Porras JM, Palomeque T, Lorite P, Cabral-de-Mello DC. Variable organization of repeats and hidden diversity of XY sex chromosomes in Pentatomidae true Bugs (Hemiptera) revealed through comparative genomic hybridization [Internet]. Chromosoma. 2025 ; 134 1-13.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1007/s00412-025-00831-7
Vancouver
Milani D, Bardella VB, Hickmann F, Corrêa AS, Michel AP, Mora P, Rico-Porras JM, Palomeque T, Lorite P, Cabral-de-Mello DC. Variable organization of repeats and hidden diversity of XY sex chromosomes in Pentatomidae true Bugs (Hemiptera) revealed through comparative genomic hybridization [Internet]. Chromosoma. 2025 ; 134 1-13.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1007/s00412-025-00831-7
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PIMENTEL, André C et al. Wolbachia offers protection against two common natural viruses of Drosophila. Microbial Ecology, v. 88, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00248-025-02518-z. Acesso em: 13 dez. 2025.
APA
Pimentel, A. C., Cesar, C. S., Martins, M., & Cogni, R. (2025). Wolbachia offers protection against two common natural viruses of Drosophila. Microbial Ecology, 88. doi:10.1007/s00248-025-02518-z
NLM
Pimentel AC, Cesar CS, Martins M, Cogni R. Wolbachia offers protection against two common natural viruses of Drosophila [Internet]. Microbial Ecology. 2025 ; 88[citado 2025 dez. 13 ] Available from: https://doi.org/10.1007/s00248-025-02518-z
Vancouver
Pimentel AC, Cesar CS, Martins M, Cogni R. Wolbachia offers protection against two common natural viruses of Drosophila [Internet]. Microbial Ecology. 2025 ; 88[citado 2025 dez. 13 ] Available from: https://doi.org/10.1007/s00248-025-02518-z
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MENDONÇA, Larine de Paiva. Dynamics of competition for resources in Drosophila suzukii (Diptera: Drosophilidae), Zaprionus indianus (Diptera. 2024. Tese (Doutorado) – Universidade de São Paulo, Piracicaba, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/11/11146/tde-07062024-112922/. Acesso em: 13 dez. 2025.
APA
Mendonça, L. de P. (2024). Dynamics of competition for resources in Drosophila suzukii (Diptera: Drosophilidae), Zaprionus indianus (Diptera: Drosophilidae) and entomopathogenic fungi (Tese (Doutorado). Universidade de São Paulo, Piracicaba. Recuperado de https://www.teses.usp.br/teses/disponiveis/11/11146/tde-07062024-112922/
NLM
Mendonça L de P. Dynamics of competition for resources in Drosophila suzukii (Diptera: Drosophilidae), Zaprionus indianus (Diptera: Drosophilidae) and entomopathogenic fungi [Internet]. 2024 ;[citado 2025 dez. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/11/11146/tde-07062024-112922/
Vancouver
Mendonça L de P. Dynamics of competition for resources in Drosophila suzukii (Diptera: Drosophilidae), Zaprionus indianus (Diptera: Drosophilidae) and entomopathogenic fungi [Internet]. 2024 ;[citado 2025 dez. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/11/11146/tde-07062024-112922/
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MIRANDA, Vitória H e AMARAL, Rafael Viana e COGNI, Rodrigo. Clinal variation in natural populations of Drosophila melanogaster: an old debate about natural selection and neutral processes. Genetics and Molecular Biology, 2024Tradução . . Disponível em: https://doi.org/10.1590/1678-4685-GMB-2023-0348. Acesso em: 13 dez. 2025.
APA
Miranda, V. H., Amaral, R. V., & Cogni, R. (2024). Clinal variation in natural populations of Drosophila melanogaster: an old debate about natural selection and neutral processes. Genetics and Molecular Biology. doi:10.1590/1678-4685-GMB-2023-0348
NLM
Miranda VH, Amaral RV, Cogni R. Clinal variation in natural populations of Drosophila melanogaster: an old debate about natural selection and neutral processes [Internet]. Genetics and Molecular Biology. 2024 ;[citado 2025 dez. 13 ] Available from: https://doi.org/10.1590/1678-4685-GMB-2023-0348
Vancouver
Miranda VH, Amaral RV, Cogni R. Clinal variation in natural populations of Drosophila melanogaster: an old debate about natural selection and neutral processes [Internet]. Genetics and Molecular Biology. 2024 ;[citado 2025 dez. 13 ] Available from: https://doi.org/10.1590/1678-4685-GMB-2023-0348
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GOES, Carolina Purcell et al. ASCL1 promotes Scrt2 expression in the neural tube. Frontiers in Cell and Developmental Biology, v. 12, p. 13 , 2024Tradução . . Disponível em: https://doi.org/10.3389/fcell.2024.1324584. Acesso em: 13 dez. 2025.
APA
Goes, C. P., Botezelli, V. S., Cruz, S. M. D. L., Cruz, M. C., Azambuja, A. P., Costa, M. S., & Yan, C. Y. I. (2024). ASCL1 promotes Scrt2 expression in the neural tube. Frontiers in Cell and Developmental Biology, 12, 13 . doi:10.3389/fcell.2024.1324584
NLM
Goes CP, Botezelli VS, Cruz SMDL, Cruz MC, Azambuja AP, Costa MS, Yan CYI. ASCL1 promotes Scrt2 expression in the neural tube [Internet]. Frontiers in Cell and Developmental Biology. 2024 ; 12 13 .[citado 2025 dez. 13 ] Available from: https://doi.org/10.3389/fcell.2024.1324584
Vancouver
Goes CP, Botezelli VS, Cruz SMDL, Cruz MC, Azambuja AP, Costa MS, Yan CYI. ASCL1 promotes Scrt2 expression in the neural tube [Internet]. Frontiers in Cell and Developmental Biology. 2024 ; 12 13 .[citado 2025 dez. 13 ] Available from: https://doi.org/10.3389/fcell.2024.1324584
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GODOY, Isabelle Bueno Silva de et al. Plant-host shift, spatial persistence, and the viability of an invasive insect population. Ecological Modelling, v. 475, p. 1-12, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ecolmodel.2022.110172. Acesso em: 13 dez. 2025.
APA
Godoy, I. B. S. de, McGrane-Corrigan, B., Mason, O., Moral, R. de A., & Godoy, W. A. C. (2023). Plant-host shift, spatial persistence, and the viability of an invasive insect population. Ecological Modelling, 475, 1-12. doi:10.1016/j.ecolmodel.2022.110172
NLM
Godoy IBS de, McGrane-Corrigan B, Mason O, Moral R de A, Godoy WAC. Plant-host shift, spatial persistence, and the viability of an invasive insect population [Internet]. Ecological Modelling. 2023 ; 475 1-12.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1016/j.ecolmodel.2022.110172
Vancouver
Godoy IBS de, McGrane-Corrigan B, Mason O, Moral R de A, Godoy WAC. Plant-host shift, spatial persistence, and the viability of an invasive insect population [Internet]. Ecological Modelling. 2023 ; 475 1-12.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1016/j.ecolmodel.2022.110172
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
LOPES, Caio Fábio Baêta. Drosophila melanogaster primary cell cultures as tools for neurobiology: focusing on mitochondria and Alzheimer's disease. 2023. Tese (Doutorado) – Universidade de São Paulo, Ribeirão Preto, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/17/17131/tde-10102023-112050/. Acesso em: 13 dez. 2025.
APA
Lopes, C. F. B. (2023). Drosophila melanogaster primary cell cultures as tools for neurobiology: focusing on mitochondria and Alzheimer's disease (Tese (Doutorado). Universidade de São Paulo, Ribeirão Preto. Recuperado de https://www.teses.usp.br/teses/disponiveis/17/17131/tde-10102023-112050/
NLM
Lopes CFB. Drosophila melanogaster primary cell cultures as tools for neurobiology: focusing on mitochondria and Alzheimer's disease [Internet]. 2023 ;[citado 2025 dez. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/17/17131/tde-10102023-112050/
Vancouver
Lopes CFB. Drosophila melanogaster primary cell cultures as tools for neurobiology: focusing on mitochondria and Alzheimer's disease [Internet]. 2023 ;[citado 2025 dez. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/17/17131/tde-10102023-112050/
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MENDONÇA, Larine de Paiva e HADDI, Khalid e GODOY, Wesley Augusto Conde. Effects of co-occurrence and intra- and interspecific interactions between Drosophila suzukii and Zaprionus indianus. Plos one, v. 18, n. 3, p. 1-20, 2023Tradução . . Disponível em: https://doi.org/10.1371/journal.pone.0281806. Acesso em: 13 dez. 2025.
APA
Mendonça, L. de P., Haddi, K., & Godoy, W. A. C. (2023). Effects of co-occurrence and intra- and interspecific interactions between Drosophila suzukii and Zaprionus indianus. Plos one, 18( 3), 1-20. doi:10.1371/journal.pone.0281806
NLM
Mendonça L de P, Haddi K, Godoy WAC. Effects of co-occurrence and intra- and interspecific interactions between Drosophila suzukii and Zaprionus indianus [Internet]. Plos one. 2023 ; 18( 3): 1-20.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1371/journal.pone.0281806
Vancouver
Mendonça L de P, Haddi K, Godoy WAC. Effects of co-occurrence and intra- and interspecific interactions between Drosophila suzukii and Zaprionus indianus [Internet]. Plos one. 2023 ; 18( 3): 1-20.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1371/journal.pone.0281806
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
LUNARDELLI, Victória Alves Santos et al. Diagnostic and vaccine potential of Zika virus envelope protein (E) derivates produced in bacterial and insect cells. Frontiers in Immunology, v. 14, p. 1-14, 2023Tradução . . Disponível em: https://doi.org/10.3389/fimmu.2023.1071041. Acesso em: 13 dez. 2025.
APA
Lunardelli, V. A. S., Almeida, B. da S., Apostolico, J. de S., Rezende, T., Yamamoto, M. M., Pereira, S. S., et al. (2023). Diagnostic and vaccine potential of Zika virus envelope protein (E) derivates produced in bacterial and insect cells. Frontiers in Immunology, 14, 1-14. doi:10.3389/fimmu.2023.1071041
NLM
Lunardelli VAS, Almeida B da S, Apostolico J de S, Rezende T, Yamamoto MM, Pereira SS, Bueno MFC, Pereira LR, Karina Inacio Carvalho, Slhessarenko RD, Rosa DS, Ferreira LC de S, Boscardin SB. Diagnostic and vaccine potential of Zika virus envelope protein (E) derivates produced in bacterial and insect cells [Internet]. Frontiers in Immunology. 2023 ; 14 1-14.[citado 2025 dez. 13 ] Available from: https://doi.org/10.3389/fimmu.2023.1071041
Vancouver
Lunardelli VAS, Almeida B da S, Apostolico J de S, Rezende T, Yamamoto MM, Pereira SS, Bueno MFC, Pereira LR, Karina Inacio Carvalho, Slhessarenko RD, Rosa DS, Ferreira LC de S, Boscardin SB. Diagnostic and vaccine potential of Zika virus envelope protein (E) derivates produced in bacterial and insect cells [Internet]. Frontiers in Immunology. 2023 ; 14 1-14.[citado 2025 dez. 13 ] Available from: https://doi.org/10.3389/fimmu.2023.1071041
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
FERNANDES, Adriano de Freitas et al. Conservation and divergence of the G-interfaces of Drosophila melanogaster septins. Cytoskeleton, v. 80, n. 7-8, p. 153-168, 2023Tradução . . Disponível em: https://doi.org/10.1002/cm.21740. Acesso em: 13 dez. 2025.
APA
Fernandes, A. de F., Cabrejos, D. A. L., Cavini, Í. A., Rosa, H. V. D., Santillan, J. A. V., Pereira, H. d'M., et al. (2023). Conservation and divergence of the G-interfaces of Drosophila melanogaster septins. Cytoskeleton, 80( 7-8), 153-168. doi:10.1002/cm.21740
NLM
Fernandes A de F, Cabrejos DAL, Cavini ÍA, Rosa HVD, Santillan JAV, Pereira H d'M, Nascimento AS, Garratt RC. Conservation and divergence of the G-interfaces of Drosophila melanogaster septins [Internet]. Cytoskeleton. 2023 ; 80( 7-8): 153-168.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1002/cm.21740
Vancouver
Fernandes A de F, Cabrejos DAL, Cavini ÍA, Rosa HVD, Santillan JAV, Pereira H d'M, Nascimento AS, Garratt RC. Conservation and divergence of the G-interfaces of Drosophila melanogaster septins [Internet]. Cytoskeleton. 2023 ; 80( 7-8): 153-168.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1002/cm.21740
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BROSH, Osama et al. A novel transposable element-mediated mechanism causes antiviral resistance in Drosophila through truncating the Veneno protein. PNAS Nexus, v. 119, n. 29, 2022Tradução . . Disponível em: https://doi.org/10.1073/pnas.2122026119. Acesso em: 13 dez. 2025.
APA
Brosh, O., Fabian, D. K., Cogni, R., Tolosana, I., Day, J. P., Olivieri, F., et al. (2022). A novel transposable element-mediated mechanism causes antiviral resistance in Drosophila through truncating the Veneno protein. PNAS Nexus, 119( 29). doi:10.1073/pnas.2122026119
NLM
Brosh O, Fabian DK, Cogni R, Tolosana I, Day JP, Olivieri F, Merckx M, Akilli N, Szkuta P, Jiggins FM. A novel transposable element-mediated mechanism causes antiviral resistance in Drosophila through truncating the Veneno protein [Internet]. PNAS Nexus. 2022 ; 119( 29):[citado 2025 dez. 13 ] Available from: https://doi.org/10.1073/pnas.2122026119
Vancouver
Brosh O, Fabian DK, Cogni R, Tolosana I, Day JP, Olivieri F, Merckx M, Akilli N, Szkuta P, Jiggins FM. A novel transposable element-mediated mechanism causes antiviral resistance in Drosophila through truncating the Veneno protein [Internet]. PNAS Nexus. 2022 ; 119( 29):[citado 2025 dez. 13 ] Available from: https://doi.org/10.1073/pnas.2122026119
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
NAVAS, Carlos e AGUDELO-CANTERO, Gustavo A e LOESCHCKE, Volker. Thermal boldness: volunteer exploration of extreme temperatures in fruit flies. Journal of Insect Physiology, v. 136, n. Ja 2022, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jinsphys.2021.104330. Acesso em: 13 dez. 2025.
APA
Navas, C., Agudelo-Cantero, G. A., & Loeschcke, V. (2022). Thermal boldness: volunteer exploration of extreme temperatures in fruit flies. Journal of Insect Physiology, 136( Ja 2022). doi:10.1016/j.jinsphys.2021.104330
NLM
Navas C, Agudelo-Cantero GA, Loeschcke V. Thermal boldness: volunteer exploration of extreme temperatures in fruit flies [Internet]. Journal of Insect Physiology. 2022 ; 136( Ja 2022):[citado 2025 dez. 13 ] Available from: https://doi.org/10.1016/j.jinsphys.2021.104330
Vancouver
Navas C, Agudelo-Cantero GA, Loeschcke V. Thermal boldness: volunteer exploration of extreme temperatures in fruit flies [Internet]. Journal of Insect Physiology. 2022 ; 136( Ja 2022):[citado 2025 dez. 13 ] Available from: https://doi.org/10.1016/j.jinsphys.2021.104330
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CABREJOS, Diego Antonio Leonardo et al. Crystal structure of the septin heterodimer Sep1-Sep2 from Drosophila melanogaster. 2022, Anais.. São Paulo: Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq, 2022. Disponível em: https://repositorio.usp.br/directbitstream/55a912c0-98df-4925-b6c5-90c2be7702dd/3100796.pdf. Acesso em: 13 dez. 2025.
APA
Cabrejos, D. A. L., Fernandes, A. de F., Cavini, Í. A., Pereira, H. d'M., & Garratt, R. C. (2022). Crystal structure of the septin heterodimer Sep1-Sep2 from Drosophila melanogaster. In Abstract book. São Paulo: Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq. Recuperado de https://repositorio.usp.br/directbitstream/55a912c0-98df-4925-b6c5-90c2be7702dd/3100796.pdf
NLM
Cabrejos DAL, Fernandes A de F, Cavini ÍA, Pereira H d'M, Garratt RC. Crystal structure of the septin heterodimer Sep1-Sep2 from Drosophila melanogaster [Internet]. Abstract book. 2022 ;[citado 2025 dez. 13 ] Available from: https://repositorio.usp.br/directbitstream/55a912c0-98df-4925-b6c5-90c2be7702dd/3100796.pdf
Vancouver
Cabrejos DAL, Fernandes A de F, Cavini ÍA, Pereira H d'M, Garratt RC. Crystal structure of the septin heterodimer Sep1-Sep2 from Drosophila melanogaster [Internet]. Abstract book. 2022 ;[citado 2025 dez. 13 ] Available from: https://repositorio.usp.br/directbitstream/55a912c0-98df-4925-b6c5-90c2be7702dd/3100796.pdf
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
VALER, Felipe Berti et al. The IRM cell adhesion molecules Hibris, Kin of irre and Roughest control egg morphology by modulating ovarian muscle contraction in Drosophila. Journal of Insect Physiology, v. 136, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jinsphys.2021.104344. Acesso em: 13 dez. 2025.
APA
Valer, F. B., Spegiorim, G. C., Espreafico, E. M., & Ramos, R. G. P. (2022). The IRM cell adhesion molecules Hibris, Kin of irre and Roughest control egg morphology by modulating ovarian muscle contraction in Drosophila. Journal of Insect Physiology, 136. doi:10.1016/j.jinsphys.2021.104344
NLM
Valer FB, Spegiorim GC, Espreafico EM, Ramos RGP. The IRM cell adhesion molecules Hibris, Kin of irre and Roughest control egg morphology by modulating ovarian muscle contraction in Drosophila [Internet]. Journal of Insect Physiology. 2022 ; 136[citado 2025 dez. 13 ] Available from: https://doi.org/10.1016/j.jinsphys.2021.104344
Vancouver
Valer FB, Spegiorim GC, Espreafico EM, Ramos RGP. The IRM cell adhesion molecules Hibris, Kin of irre and Roughest control egg morphology by modulating ovarian muscle contraction in Drosophila [Internet]. Journal of Insect Physiology. 2022 ; 136[citado 2025 dez. 13 ] Available from: https://doi.org/10.1016/j.jinsphys.2021.104344
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BALTRUK, Ludmilla Jurevitz et al. An additive repression mechanism sets the anterior limits of anterior pair-rule stripes 1. Cells & Development, v. 171, p. 203802 ( 01-24), 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cdev.2022.203802. Acesso em: 13 dez. 2025.
APA
Baltruk, L. J., Lavezzo, G. M., Lima, A. M., Digiampietri, L. A., & Andrioli, L. P. M. (2022). An additive repression mechanism sets the anterior limits of anterior pair-rule stripes 1. Cells & Development, 171, 203802 ( 01-24). doi:10.1016/j.cdev.2022.203802
NLM
Baltruk LJ, Lavezzo GM, Lima AM, Digiampietri LA, Andrioli LPM. An additive repression mechanism sets the anterior limits of anterior pair-rule stripes 1 [Internet]. Cells & Development. 2022 ; 171 203802 ( 01-24).[citado 2025 dez. 13 ] Available from: https://doi.org/10.1016/j.cdev.2022.203802
Vancouver
Baltruk LJ, Lavezzo GM, Lima AM, Digiampietri LA, Andrioli LPM. An additive repression mechanism sets the anterior limits of anterior pair-rule stripes 1 [Internet]. Cells & Development. 2022 ; 171 203802 ( 01-24).[citado 2025 dez. 13 ] Available from: https://doi.org/10.1016/j.cdev.2022.203802
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ESTECA, Fernanda de Cássia Neves. Environmental management strategies for pest control in strawberry crop. 2021. Tese (Doutorado) – Universidade de São Paulo, Piracicaba, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/11/11146/tde-13122021-174103/. Acesso em: 13 dez. 2025.
APA
Esteca, F. de C. N. (2021). Environmental management strategies for pest control in strawberry crop (Tese (Doutorado). Universidade de São Paulo, Piracicaba. Recuperado de https://www.teses.usp.br/teses/disponiveis/11/11146/tde-13122021-174103/
NLM
Esteca F de CN. Environmental management strategies for pest control in strawberry crop [Internet]. 2021 ;[citado 2025 dez. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/11/11146/tde-13122021-174103/
Vancouver
Esteca F de CN. Environmental management strategies for pest control in strawberry crop [Internet]. 2021 ;[citado 2025 dez. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/11/11146/tde-13122021-174103/
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PIMENTEL, André C et al. The antiviral effects of the symbiont bacteria Wolbachia in insects. Frontiers in Immunology, 2021Tradução . . Disponível em: https://doi.org/10.3389/fimmu.2020.626329. Acesso em: 13 dez. 2025.
APA
Pimentel, A. C., Cesar, C. S., Martins, M., & Cogni, R. (2021). The antiviral effects of the symbiont bacteria Wolbachia in insects. Frontiers in Immunology. doi:10.3389/fimmu.2020.626329
NLM
Pimentel AC, Cesar CS, Martins M, Cogni R. The antiviral effects of the symbiont bacteria Wolbachia in insects [Internet]. Frontiers in Immunology. 2021 ;[citado 2025 dez. 13 ] Available from: https://doi.org/10.3389/fimmu.2020.626329
Vancouver
Pimentel AC, Cesar CS, Martins M, Cogni R. The antiviral effects of the symbiont bacteria Wolbachia in insects [Internet]. Frontiers in Immunology. 2021 ;[citado 2025 dez. 13 ] Available from: https://doi.org/10.3389/fimmu.2020.626329
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MORAES, Maria Nathalia et al. Opsins outside the eye and the skin: a more complex scenario than originally thought for a classical light sensor. Cell and Tissue Research, v. 385, p. 519–538, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00441-021-03500-0. Acesso em: 13 dez. 2025.
APA
Moraes, M. N., Assis, L. V. M. de, Provencio, I., & Castrucci, A. M. de L. (2021). Opsins outside the eye and the skin: a more complex scenario than originally thought for a classical light sensor. Cell and Tissue Research, 385, 519–538. doi:10.1007/s00441-021-03500-0
NLM
Moraes MN, Assis LVM de, Provencio I, Castrucci AM de L. Opsins outside the eye and the skin: a more complex scenario than originally thought for a classical light sensor [Internet]. Cell and Tissue Research. 2021 ; 385 519–538.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1007/s00441-021-03500-0
Vancouver
Moraes MN, Assis LVM de, Provencio I, Castrucci AM de L. Opsins outside the eye and the skin: a more complex scenario than originally thought for a classical light sensor [Internet]. Cell and Tissue Research. 2021 ; 385 519–538.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1007/s00441-021-03500-0
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
XIA, Shengqian et al. Genomic analyses of new genes and their phenotypic effects reveal rapid evolution of essential functions in Drosophila development. PLoS Genet, v. 17, n. 7, 2021Tradução . . Disponível em: https://doi.org/10.1371/journal.pgen.1009654. Acesso em: 13 dez. 2025.
APA
Xia, S., VanKuren, N. W., Chen, C., Zhang, L., Kemkemer, C., Shao, Y., et al. (2021). Genomic analyses of new genes and their phenotypic effects reveal rapid evolution of essential functions in Drosophila development. PLoS Genet, 17( 7). doi:10.1371/journal.pgen.1009654
NLM
Xia S, VanKuren NW, Chen C, Zhang L, Kemkemer C, Shao Y, Jia H, Lee UJ, Advani AS, Gschwend A, Vibranovski M, Chen S, Zhang YE, Long M. Genomic analyses of new genes and their phenotypic effects reveal rapid evolution of essential functions in Drosophila development [Internet]. PLoS Genet. 2021 ; 17( 7):[citado 2025 dez. 13 ] Available from: https://doi.org/10.1371/journal.pgen.1009654
Vancouver
Xia S, VanKuren NW, Chen C, Zhang L, Kemkemer C, Shao Y, Jia H, Lee UJ, Advani AS, Gschwend A, Vibranovski M, Chen S, Zhang YE, Long M. Genomic analyses of new genes and their phenotypic effects reveal rapid evolution of essential functions in Drosophila development [Internet]. PLoS Genet. 2021 ; 17( 7):[citado 2025 dez. 13 ] Available from: https://doi.org/10.1371/journal.pgen.1009654