Filtros : "Topological Methods in Nonlinear Analysis" "GONÇALVES, DACIBERG LIMA" Limpar

Filtros



Limitar por data


  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: GEOMETRIA ALGÉBRICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BROWN, Robert F. e GONÇALVES, Daciberg Lima. Lift factors for the Nielsen root theory on n-valued maps. Topological Methods in Nonlinear Analysis, v. 61, n. 1, p. 269–289, 2023Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.017. Acesso em: 18 nov. 2025.
    • APA

      Brown, R. F., & Gonçalves, D. L. (2023). Lift factors for the Nielsen root theory on n-valued maps. Topological Methods in Nonlinear Analysis, 61( 1), 269–289. doi:10.12775/TMNA.2022.017
    • NLM

      Brown RF, Gonçalves DL. Lift factors for the Nielsen root theory on n-valued maps [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 61( 1): 269–289.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.017
    • Vancouver

      Brown RF, Gonçalves DL. Lift factors for the Nielsen root theory on n-valued maps [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 61( 1): 269–289.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.017
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assuntos: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 491-516, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.005. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2022). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, 60( 2), 491-516. doi:10.12775/TMNA.2022.005
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.005
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.005
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANTOS, Anderson Paião dos e SILVA, Weslem Liberato. The Borsuk-Ulam property for maps from the product of two surfaces into a surface. Topological Methods in Nonlinear Analysis, v. 58, n. 2, p. 367-388, 2021Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.020. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Santos, A. P. dos, & Silva, W. L. (2021). The Borsuk-Ulam property for maps from the product of two surfaces into a surface. Topological Methods in Nonlinear Analysis, 58( 2), 367-388. doi:10.12775/TMNA.2021.020
    • NLM

      Gonçalves DL, Santos AP dos, Silva WL. The Borsuk-Ulam property for maps from the product of two surfaces into a surface [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 2): 367-388.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.020
    • Vancouver

      Gonçalves DL, Santos AP dos, Silva WL. The Borsuk-Ulam property for maps from the product of two surfaces into a surface [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 2): 367-388.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.020

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025