Filtros : "Topological Methods in Nonlinear Analysis" "Brasil" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, TEORIA DO ÍNDICE, COBORDISMO, VARIEDADES TOPOLÓGICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty Abaroa de et al. Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds. Topological Methods in Nonlinear Analysis, v. 62, n. 1, p. Se 2023, 2023Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.070. Acesso em: 18 nov. 2025.
    • APA

      Rezende, K. A. de, Grulha Júnior, N. de G., Lima, D. V. de S., & Zigart, M. A. de J. (2023). Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds. Topological Methods in Nonlinear Analysis, 62( 1), Se 2023. doi:10.12775/TMNA.2022.070
    • NLM

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 62( 1): Se 2023.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.070
    • Vancouver

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 62( 1): Se 2023.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.070
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE, VARIEDADES TOPOLÓGICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty Abaroa de et al. Gutierrez-Sotomayor flows on singular surfaces. Topological Methods in Nonlinear Analysis, v. 60, n. 1, p. 221-265, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.054. Acesso em: 18 nov. 2025.
    • APA

      Rezende, K. A. de, Grulha Júnior, N. de G., Lima, D. V. de S., & Zigart, M. A. de J. (2022). Gutierrez-Sotomayor flows on singular surfaces. Topological Methods in Nonlinear Analysis, 60( 1), 221-265. doi:10.12775/TMNA.2021.054
    • NLM

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Gutierrez-Sotomayor flows on singular surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 1): 221-265.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.054
    • Vancouver

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Gutierrez-Sotomayor flows on singular surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 1): 221-265.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.054
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 491-516, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.005. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2022). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, 60( 2), 491-516. doi:10.12775/TMNA.2022.005
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.005
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.005
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, TEORIA DA BIFURCAÇÃO, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 623-685, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.063. Acesso em: 18 nov. 2025.
    • APA

      Mota, M. C., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, 59( 2A), 623-685. doi:10.12775/TMNA.2021.063
    • NLM

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.063
    • Vancouver

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.063
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANTOS, Anderson Paião dos e SILVA, Weslem Liberato. The Borsuk-Ulam property for maps from the product of two surfaces into a surface. Topological Methods in Nonlinear Analysis, v. 58, n. 2, p. 367-388, 2021Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.020. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Santos, A. P. dos, & Silva, W. L. (2021). The Borsuk-Ulam property for maps from the product of two surfaces into a surface. Topological Methods in Nonlinear Analysis, 58( 2), 367-388. doi:10.12775/TMNA.2021.020
    • NLM

      Gonçalves DL, Santos AP dos, Silva WL. The Borsuk-Ulam property for maps from the product of two surfaces into a surface [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 2): 367-388.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.020
    • Vancouver

      Gonçalves DL, Santos AP dos, Silva WL. The Borsuk-Ulam property for maps from the product of two surfaces into a surface [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 2): 367-388.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.020
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: HOMOTOPIA, HOMOLOGIA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENTEADO, Northon Canevari Leme e MANZOLI NETO, Oziride. Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 473-482, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.056. Acesso em: 18 nov. 2025.
    • APA

      Penteado, N. C. L., & Manzoli Neto, O. (2020). Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, 56( 2), 473-482. doi:10.12775/TMNA.2020.056
    • NLM

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2020.056
    • Vancouver

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2020.056
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIRES, Leonardo. Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, v. 53, n. 1, p. 1-23, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.048. Acesso em: 18 nov. 2025.
    • APA

      Carvalho, A. N. de, & Pires, L. (2019). Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, 53( 1), 1-23. doi:10.12775/TMNA.2018.048
    • NLM

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2018.048
    • Vancouver

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2018.048
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Dahisy V. de S et al. Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 259-311, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.047. Acesso em: 18 nov. 2025.
    • APA

      Lima, D. V. de S., Manzoli Neto, O., Rezende, K. A. de, & Silveira, M. R. da. (2018). Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, 51( 1), 259-311. doi:10.12775/TMNA.2017.047
    • NLM

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2017.047
    • Vancouver

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2017.047
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES INTEGRO-DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DINÂMICA TOPOLÓGICA, ESTABILIDADE DE LIAPUNOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Severino Horácio da e PEREIRA, Antônio Luiz. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, v. 51, n. 2, p. 583-598, 2018Tradução . . Disponível em: https://doi.org/10.12775/tmna.2018.004. Acesso em: 18 nov. 2025.
    • APA

      Silva, S. H. da, & Pereira, A. L. (2018). A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, 51( 2), 583-598. doi:10.12775/tmna.2018.004
    • NLM

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2018.004
    • Vancouver

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2018.004
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TOPOLOGIA DIFERENCIAL, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, José e MEZA-SARMIENTO, Ingrid S e OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 183-213, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.051. Acesso em: 18 nov. 2025.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2018). Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, 51( 1), 183-213. doi:10.12775/TMNA.2017.051
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2017.051
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2017.051
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES IMPULSIVAS, ESTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e GIMENES, Luciene P. e SOUTO, Ginnara M. Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, v. 49, n. 1, p. 133-163, 2017Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2016.065. Acesso em: 18 nov. 2025.
    • APA

      Bonotto, E. de M., Gimenes, L. P., & Souto, G. M. (2017). Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, 49( 1), 133-163. doi:10.12775/TMNA.2016.065
    • NLM

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2016.065
    • Vancouver

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2016.065
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus C e CARVALHO, Alexandre Nolasco de. Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 563-602, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.059. Acesso em: 18 nov. 2025.
    • APA

      Bortolan, M. C., & Carvalho, A. N. de. (2015). Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, 46( 2), 563-602. doi:10.12775/tmna.2015.059
    • NLM

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.059
    • Vancouver

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.059
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES IMPULSIVAS, SISTEMAS DISSIPATIVO

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, Daniela P. Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, v. 41, n. 1, p. 1-38, 2013Tradução . . Disponível em: https://projecteuclid.org/euclid.tmna/1461253854. Acesso em: 18 nov. 2025.
    • APA

      Bonotto, E. de M., & Demuner, D. P. (2013). Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, 41( 1), 1-38. Recuperado de https://projecteuclid.org/euclid.tmna/1461253854
    • NLM

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.[citado 2025 nov. 18 ] Available from: https://projecteuclid.org/euclid.tmna/1461253854
    • Vancouver

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.[citado 2025 nov. 18 ] Available from: https://projecteuclid.org/euclid.tmna/1461253854
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: ESPAÇOS FIBRADOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATTOS, Denise de e SANTOS, Edivaldo L. dos. On nonsymmetric theorems for (H,G)-coincidences. Topological Methods in Nonlinear Analysis, v. 33, n. 1, p. 105-119, 2009Tradução . . Disponível em: https://doi.org/10.12775/tmna.2009.008. Acesso em: 18 nov. 2025.
    • APA

      Mattos, D. de, & Santos, E. L. dos. (2009). On nonsymmetric theorems for (H,G)-coincidences. Topological Methods in Nonlinear Analysis, 33( 1), 105-119. doi:10.12775/tmna.2009.008
    • NLM

      Mattos D de, Santos EL dos. On nonsymmetric theorems for (H,G)-coincidences [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 33( 1): 105-119.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2009.008
    • Vancouver

      Mattos D de, Santos EL dos. On nonsymmetric theorems for (H,G)-coincidences [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 33( 1): 105-119.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2009.008
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e PENTEADO, Dirceu e VIEIRA, João Peres. Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles. Topological Methods in Nonlinear Analysis, v. 33, n. 2, p. 293-305, 2009Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2009.019. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Penteado, D., & Vieira, J. P. (2009). Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles. Topological Methods in Nonlinear Analysis, 33( 2), 293-305. doi:10.12775/TMNA.2009.019
    • NLM

      Gonçalves DL, Penteado D, Vieira JP. Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 33( 2): 293-305.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2009.019
    • Vancouver

      Gonçalves DL, Penteado D, Vieira JP. Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 33( 2): 293-305.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2009.019
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: OPERADORES NÃO LINEARES, ANÁLISE GLOBAL

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIASI, Carlos e VIDALON, Carlos Teobaldo Gutiérrez e SANTOS, Edivaldo L. dos. The implicit function theorem for continuous functions. Topological Methods in Nonlinear Analysis, v. 32, n. 1, p. 177-185, 2008Tradução . . Disponível em: https://projecteuclid.org/euclid.tmna/1463150471. Acesso em: 18 nov. 2025.
    • APA

      Biasi, C., Vidalon, C. T. G., & Santos, E. L. dos. (2008). The implicit function theorem for continuous functions. Topological Methods in Nonlinear Analysis, 32( 1), 177-185. Recuperado de https://projecteuclid.org/euclid.tmna/1463150471
    • NLM

      Biasi C, Vidalon CTG, Santos EL dos. The implicit function theorem for continuous functions [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 1): 177-185.[citado 2025 nov. 18 ] Available from: https://projecteuclid.org/euclid.tmna/1463150471
    • Vancouver

      Biasi C, Vidalon CTG, Santos EL dos. The implicit function theorem for continuous functions [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 1): 177-185.[citado 2025 nov. 18 ] Available from: https://projecteuclid.org/euclid.tmna/1463150471

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025