Filtros : "Topological Methods in Nonlinear Analysis" "TOPOLOGIA ALGÉBRICA" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 491-516, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.005. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2022). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, 60( 2), 491-516. doi:10.12775/TMNA.2022.005
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.005
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.005
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANTOS, Anderson Paião dos e SILVA, Weslem Liberato. The Borsuk-Ulam property for maps from the product of two surfaces into a surface. Topological Methods in Nonlinear Analysis, v. 58, n. 2, p. 367-388, 2021Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.020. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Santos, A. P. dos, & Silva, W. L. (2021). The Borsuk-Ulam property for maps from the product of two surfaces into a surface. Topological Methods in Nonlinear Analysis, 58( 2), 367-388. doi:10.12775/TMNA.2021.020
    • NLM

      Gonçalves DL, Santos AP dos, Silva WL. The Borsuk-Ulam property for maps from the product of two surfaces into a surface [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 2): 367-388.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.020
    • Vancouver

      Gonçalves DL, Santos AP dos, Silva WL. The Borsuk-Ulam property for maps from the product of two surfaces into a surface [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 2): 367-388.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.020
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TOPOLOGIA DINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e KELLY, Michael R. Index zero fixed points and 2-complexes with local separating points. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 457-472, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.054. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., & Kelly, M. R. (2020). Index zero fixed points and 2-complexes with local separating points. Topological Methods in Nonlinear Analysis, 56( 2), 457-472. doi:10.12775/TMNA.2020.054
    • NLM

      Gonçalves DL, Kelly MR. Index zero fixed points and 2-complexes with local separating points [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 457-472.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2020.054
    • Vancouver

      Gonçalves DL, Kelly MR. Index zero fixed points and 2-complexes with local separating points [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 457-472.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2020.054
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TEORIA ESPECTRAL, OPERADORES LINEARES, TOPOLOGIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, v. 55, n. 1, p. 169-184, 2020Tradução . . Disponível em: https://doi.org/10.12775/tmna.2019.093. Acesso em: 18 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2020). Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, 55( 1), 169-184. doi:10.12775/tmna.2019.093
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2019.093
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2019.093
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 529-558, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.003. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Cardona, F. S. P., Guaschi, J., & Laass, V. C. (2020). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, 56( 2), 529-558. doi:10.12775/TMNA.2020.003
    • NLM

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2020.003
    • Vancouver

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2020.003
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Dahisy V. de S et al. Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 259-311, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.047. Acesso em: 18 nov. 2025.
    • APA

      Lima, D. V. de S., Manzoli Neto, O., Rezende, K. A. de, & Silveira, M. R. da. (2018). Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, 51( 1), 259-311. doi:10.12775/TMNA.2017.047
    • NLM

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2017.047
    • Vancouver

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2017.047
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENILLE, Marcio Colombo e MANZOLI NETO, Oziride. Root problem for convenient maps. Topological Methods in Nonlinear Analysis, v. 36, n. 2, p. 327-352, 2010Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Fenille, M. C., & Manzoli Neto, O. (2010). Root problem for convenient maps. Topological Methods in Nonlinear Analysis, 36( 2), 327-352.
    • NLM

      Fenille MC, Manzoli Neto O. Root problem for convenient maps. Topological Methods in Nonlinear Analysis. 2010 ; 36( 2): 327-352.[citado 2025 nov. 18 ]
    • Vancouver

      Fenille MC, Manzoli Neto O. Root problem for convenient maps. Topological Methods in Nonlinear Analysis. 2010 ; 36( 2): 327-352.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e PENTEADO, Dirceu e VIEIRA, João Peres. Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles. Topological Methods in Nonlinear Analysis, v. 33, n. 2, p. 293-305, 2009Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2009.019. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Penteado, D., & Vieira, J. P. (2009). Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles. Topological Methods in Nonlinear Analysis, 33( 2), 293-305. doi:10.12775/TMNA.2009.019
    • NLM

      Gonçalves DL, Penteado D, Vieira JP. Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 33( 2): 293-305.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2009.019
    • Vancouver

      Gonçalves DL, Penteado D, Vieira JP. Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 33( 2): 293-305.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2009.019
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e BORSARI, Lucilia Daruiz. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. Topological Methods in Nonlinear Analysis, v. 21, n. 1, p. 115-130, 2003Tradução . . Disponível em: https://doi.org/10.12775/tmna.2003.007. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., & Borsari, L. D. (2003). Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. Topological Methods in Nonlinear Analysis, 21( 1), 115-130. doi:10.12775/tmna.2003.007
    • NLM

      Gonçalves DL, Borsari LD. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 1): 115-130.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.007
    • Vancouver

      Gonçalves DL, Borsari LD. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 1): 115-130.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.007
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARDONA, Fernanda Soares Pinto e WONG, Peter Negai-Sing. The relative Reidemeister numbers of fiber map pairs. Topological Methods in Nonlinear Analysis, p. 131-145, 2003Tradução . . Disponível em: https://doi.org/10.12775/tmna.2003.008. Acesso em: 18 nov. 2025.
    • APA

      Cardona, F. S. P., & Wong, P. N. -S. (2003). The relative Reidemeister numbers of fiber map pairs. Topological Methods in Nonlinear Analysis, 131-145. doi:10.12775/tmna.2003.008
    • NLM

      Cardona FSP, Wong PN-S. The relative Reidemeister numbers of fiber map pairs [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 131-145.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.008
    • Vancouver

      Cardona FSP, Wong PN-S. The relative Reidemeister numbers of fiber map pairs [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 131-145.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.008
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FAGUNDES, Pedro Luiz e GONÇALVES, Daciberg Lima. Fixed point indices of equivariant maps of certain Jiang spaces. Topological Methods in Nonlinear Analysis, v. 14, p. 151-158, 1999Tradução . . Disponível em: https://doi.org/10.12775/tmna.1999.025. Acesso em: 18 nov. 2025.
    • APA

      Fagundes, P. L., & Gonçalves, D. L. (1999). Fixed point indices of equivariant maps of certain Jiang spaces. Topological Methods in Nonlinear Analysis, 14, 151-158. doi:10.12775/tmna.1999.025
    • NLM

      Fagundes PL, Gonçalves DL. Fixed point indices of equivariant maps of certain Jiang spaces [Internet]. Topological Methods in Nonlinear Analysis. 1999 ; 14 151-158.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.1999.025
    • Vancouver

      Fagundes PL, Gonçalves DL. Fixed point indices of equivariant maps of certain Jiang spaces [Internet]. Topological Methods in Nonlinear Analysis. 1999 ; 14 151-158.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.1999.025

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025