Filtros : "Topological Methods in Nonlinear Analysis" "TEORIA ESPECTRAL" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: AUTOVALORES E AUTOVETORES, TEORIA ESPECTRAL, TEORIA DO GRAU

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 499-523, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.006. Acesso em: 18 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory. Topological Methods in Nonlinear Analysis, 59( 2A), 499-523. doi:10.12775/TMNA.2021.006
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 499-523.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.006
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 499-523.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.006
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TEORIA ESPECTRAL, OPERADORES LINEARES, TOPOLOGIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, v. 55, n. 1, p. 169-184, 2020Tradução . . Disponível em: https://doi.org/10.12775/tmna.2019.093. Acesso em: 18 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2020). Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, 55( 1), 169-184. doi:10.12775/tmna.2019.093
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2019.093
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2019.093
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, TEORIA ESPECTRAL, TEORIA DO ÍNDICE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, v. 52, n. 2, p. 631-664, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.025. Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2018). On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 52( 2), 631-664. doi:10.12775/TMNA.2018.025
    • NLM

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2018.025
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2018.025

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025