Filtros : "Topological Methods in Nonlinear Analysis" "TEORIA DOS GRUPOS" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 491-516, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.005. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2022). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, 60( 2), 491-516. doi:10.12775/TMNA.2022.005
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.005
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.005
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 529-558, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.003. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Cardona, F. S. P., Guaschi, J., & Laass, V. C. (2020). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, 56( 2), 529-558. doi:10.12775/TMNA.2020.003
    • NLM

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2020.003
    • Vancouver

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2020.003
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS ABELIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEKIMPE, Karel e GONÇALVES, Daciberg Lima. The R∞ property for Abelian groups. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 773-784, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.066. Acesso em: 18 nov. 2025.
    • APA

      Dekimpe, K., & Gonçalves, D. L. (2015). The R∞ property for Abelian groups. Topological Methods in Nonlinear Analysis, 46( 2), 773-784. doi:10.12775/TMNA.2015.066
    • NLM

      Dekimpe K, Gonçalves DL. The R∞ property for Abelian groups [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 773-784.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.066
    • Vancouver

      Dekimpe K, Gonçalves DL. The R∞ property for Abelian groups [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 773-784.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.066

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025