Obstruction theory and minimal number of coincidences for maps from a complex into a manifold (2003)
Source: Topological Methods in Nonlinear Analysis. Unidade: IME
Assunto: TOPOLOGIA ALGÉBRICA
ABNT
GONÇALVES, Daciberg Lima e BORSARI, Lucilia Daruiz. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. Topological Methods in Nonlinear Analysis, v. 21, n. 1, p. 115-130, 2003Tradução . . Disponível em: https://doi.org/10.12775/tmna.2003.007. Acesso em: 18 nov. 2025.APA
Gonçalves, D. L., & Borsari, L. D. (2003). Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. Topological Methods in Nonlinear Analysis, 21( 1), 115-130. doi:10.12775/tmna.2003.007NLM
Gonçalves DL, Borsari LD. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 1): 115-130.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.007Vancouver
Gonçalves DL, Borsari LD. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 1): 115-130.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.007
