Filtros : "Topological Methods in Nonlinear Analysis" "Indexado no MathSciNet - American Mathematical Society" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e BORSARI, Lucilia Daruiz. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. Topological Methods in Nonlinear Analysis, v. 21, n. 1, p. 115-130, 2003Tradução . . Disponível em: https://doi.org/10.12775/tmna.2003.007. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., & Borsari, L. D. (2003). Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. Topological Methods in Nonlinear Analysis, 21( 1), 115-130. doi:10.12775/tmna.2003.007
    • NLM

      Gonçalves DL, Borsari LD. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 1): 115-130.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.007
    • Vancouver

      Gonçalves DL, Borsari LD. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 1): 115-130.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.007
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARDONA, Fernanda Soares Pinto e WONG, Peter Negai-Sing. The relative Reidemeister numbers of fiber map pairs. Topological Methods in Nonlinear Analysis, p. 131-145, 2003Tradução . . Disponível em: https://doi.org/10.12775/tmna.2003.008. Acesso em: 18 nov. 2025.
    • APA

      Cardona, F. S. P., & Wong, P. N. -S. (2003). The relative Reidemeister numbers of fiber map pairs. Topological Methods in Nonlinear Analysis, 131-145. doi:10.12775/tmna.2003.008
    • NLM

      Cardona FSP, Wong PN-S. The relative Reidemeister numbers of fiber map pairs [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 131-145.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.008
    • Vancouver

      Cardona FSP, Wong PN-S. The relative Reidemeister numbers of fiber map pairs [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 131-145.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.008
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: GEOMETRIA SEMI-RIEMANNIANA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto et al. Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions. Topological Methods in Nonlinear Analysis, v. 21, n. 2, p. 273-291, 2003Tradução . . Disponível em: https://doi.org/10.12775/tmna.2003.016. Acesso em: 18 nov. 2025.
    • APA

      Giambó, R., Giannoni, F., Piccione, P., & Tausk, D. V. (2003). Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions. Topological Methods in Nonlinear Analysis, 21( 2), 273-291. doi:10.12775/tmna.2003.016
    • NLM

      Giambó R, Giannoni F, Piccione P, Tausk DV. Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 2): 273-291.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.016
    • Vancouver

      Giambó R, Giannoni F, Piccione P, Tausk DV. Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 2): 273-291.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.016
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Antônio Luiz e PEREIRA, Marcone Corrêa. A generic property for the eigenfunctions of the Laplacian. Topological Methods in Nonlinear Analysis, v. 20, n. 2, p. 283-313, 2002Tradução . . Disponível em: https://doi.org/10.12775/tmna.2002.038. Acesso em: 18 nov. 2025.
    • APA

      Pereira, A. L., & Pereira, M. C. (2002). A generic property for the eigenfunctions of the Laplacian. Topological Methods in Nonlinear Analysis, 20( 2), 283-313. doi:10.12775/tmna.2002.038
    • NLM

      Pereira AL, Pereira MC. A generic property for the eigenfunctions of the Laplacian [Internet]. Topological Methods in Nonlinear Analysis. 2002 ; 20( 2): 283-313.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2002.038
    • Vancouver

      Pereira AL, Pereira MC. A generic property for the eigenfunctions of the Laplacian [Internet]. Topological Methods in Nonlinear Analysis. 2002 ; 20( 2): 283-313.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2002.038
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FAGUNDES, Pedro Luiz e GONÇALVES, Daciberg Lima. Fixed point indices of equivariant maps of certain Jiang spaces. Topological Methods in Nonlinear Analysis, v. 14, p. 151-158, 1999Tradução . . Disponível em: https://doi.org/10.12775/tmna.1999.025. Acesso em: 18 nov. 2025.
    • APA

      Fagundes, P. L., & Gonçalves, D. L. (1999). Fixed point indices of equivariant maps of certain Jiang spaces. Topological Methods in Nonlinear Analysis, 14, 151-158. doi:10.12775/tmna.1999.025
    • NLM

      Fagundes PL, Gonçalves DL. Fixed point indices of equivariant maps of certain Jiang spaces [Internet]. Topological Methods in Nonlinear Analysis. 1999 ; 14 151-158.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.1999.025
    • Vancouver

      Fagundes PL, Gonçalves DL. Fixed point indices of equivariant maps of certain Jiang spaces [Internet]. Topological Methods in Nonlinear Analysis. 1999 ; 14 151-158.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.1999.025

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025