Filtros : "Nonlinear Analysis: Theory Methods and Applications" "Financiamento CNPq" Removido: "IME-MAT" Limpar

Filtros



Limitar por data


  • Fonte: Nonlinear Analysis. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson Abrantes dos e SOARES, Sérgio Henrique Monari. Lipschitz regularity of solutions to two-phase free boundary problems governed by a non-uniformly elliptic operator. Nonlinear Analysis, v. 261, p. 1-14, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.na.2025.113893. Acesso em: 05 dez. 2025.
    • APA

      Santos, J. A. dos, & Soares, S. H. M. (2025). Lipschitz regularity of solutions to two-phase free boundary problems governed by a non-uniformly elliptic operator. Nonlinear Analysis, 261, 1-14. doi:10.1016/j.na.2025.113893
    • NLM

      Santos JA dos, Soares SHM. Lipschitz regularity of solutions to two-phase free boundary problems governed by a non-uniformly elliptic operator [Internet]. Nonlinear Analysis. 2025 ; 261 1-14.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2025.113893
    • Vancouver

      Santos JA dos, Soares SHM. Lipschitz regularity of solutions to two-phase free boundary problems governed by a non-uniformly elliptic operator [Internet]. Nonlinear Analysis. 2025 ; 261 1-14.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2025.113893
  • Fonte: Nonlinear Analysis. Unidade: FFCLRP

    Assuntos: EQUAÇÕES DE EVOLUÇÃO, PROBLEMA DE CAUCHY, MATEMÁTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D’ABBICCO, M. e EBERT, Marcelo Rempel. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping. Nonlinear Analysis, v. 215, p. [26] , 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2021.112637. Acesso em: 05 dez. 2025.
    • APA

      D’Abbicco, M., & Ebert, M. R. (2022). The critical exponent for semilinear σ-evolution equations with a strong non-effective damping. Nonlinear Analysis, 215, [26] . doi:10.1016/j.na.2021.112637
    • NLM

      D’Abbicco M, Ebert MR. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping [Internet]. Nonlinear Analysis. 2022 ; 215 [26] .[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2021.112637
    • Vancouver

      D’Abbicco M, Ebert MR. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping [Internet]. Nonlinear Analysis. 2022 ; 215 [26] .[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2021.112637
  • Fonte: Nonlinear Analysis. Unidade: FFCLRP

    Assuntos: ESPAÇOS DE HARDY, OPERADORES, MATEMÁTICA APLICADA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAFNI, Galia et al. Inhomogeneous cancellation conditions and Calderón–Zygmund type operators on hp. Nonlinear Analysis, v. 225, p. 1-22, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2022.113110. Acesso em: 05 dez. 2025.
    • APA

      Dafni, G., Lau, C. H., Picon, T. H., & Vasconcelos, C. (2022). Inhomogeneous cancellation conditions and Calderón–Zygmund type operators on hp. Nonlinear Analysis, 225, 1-22. doi:10.1016/j.na.2022.113110
    • NLM

      Dafni G, Lau CH, Picon TH, Vasconcelos C. Inhomogeneous cancellation conditions and Calderón–Zygmund type operators on hp [Internet]. Nonlinear Analysis. 2022 ; 225 1-22.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2022.113110
    • Vancouver

      Dafni G, Lau CH, Picon TH, Vasconcelos C. Inhomogeneous cancellation conditions and Calderón–Zygmund type operators on hp [Internet]. Nonlinear Analysis. 2022 ; 225 1-22.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2022.113110

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025