Filtros : "Nonlinear Analysis: Theory Methods and Applications" "Brasil" Removido: "ICMC" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri et al. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851]. Nonlinear Analysis, v. 238, p. 1-9, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.na.2023.113389. Acesso em: 07 dez. 2025.
    • APA

      Benci, V., Nardulli, S., Acevedo, L. E. O., & Piccione, P. (2024). Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851]. Nonlinear Analysis, 238, 1-9. doi:10.1016/j.na.2023.113389
    • NLM

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851] [Internet]. Nonlinear Analysis. 2024 ; 238 1-9.[citado 2025 dez. 07 ] Available from: https://doi.org/10.1016/j.na.2023.113389
    • Vancouver

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851] [Internet]. Nonlinear Analysis. 2024 ; 238 1-9.[citado 2025 dez. 07 ] Available from: https://doi.org/10.1016/j.na.2023.113389
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri et al. Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint. Nonlinear Analysis, v. 220, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2022.112851. Acesso em: 07 dez. 2025.
    • APA

      Benci, V., Nardulli, S., Acevedo, L. E. O., & Piccione, P. (2022). Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint. Nonlinear Analysis, 220. doi:10.1016/j.na.2022.112851
    • NLM

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Internet]. Nonlinear Analysis. 2022 ; 220[citado 2025 dez. 07 ] Available from: https://doi.org/10.1016/j.na.2022.112851
    • Vancouver

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Internet]. Nonlinear Analysis. 2022 ; 220[citado 2025 dez. 07 ] Available from: https://doi.org/10.1016/j.na.2022.112851
  • Source: Nonlinear Analysis. Unidade: FFCLRP

    Subjects: ESPAÇOS DE HARDY, OPERADORES, MATEMÁTICA APLICADA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAFNI, Galia et al. Inhomogeneous cancellation conditions and Calderón–Zygmund type operators on hp. Nonlinear Analysis, v. 225, p. 1-22, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2022.113110. Acesso em: 07 dez. 2025.
    • APA

      Dafni, G., Lau, C. H., Picon, T. H., & Vasconcelos, C. (2022). Inhomogeneous cancellation conditions and Calderón–Zygmund type operators on hp. Nonlinear Analysis, 225, 1-22. doi:10.1016/j.na.2022.113110
    • NLM

      Dafni G, Lau CH, Picon TH, Vasconcelos C. Inhomogeneous cancellation conditions and Calderón–Zygmund type operators on hp [Internet]. Nonlinear Analysis. 2022 ; 225 1-22.[citado 2025 dez. 07 ] Available from: https://doi.org/10.1016/j.na.2022.113110
    • Vancouver

      Dafni G, Lau CH, Picon TH, Vasconcelos C. Inhomogeneous cancellation conditions and Calderón–Zygmund type operators on hp [Internet]. Nonlinear Analysis. 2022 ; 225 1-22.[citado 2025 dez. 07 ] Available from: https://doi.org/10.1016/j.na.2022.113110
  • Source: Nonlinear Analysis. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COUTINHO, Andréia da Silva e PEREIRA, Antonio Luiz. Equivariant bifurcations in a non-local model of ferromagnetic materials. Nonlinear Analysis, v. 37, p. 1-13, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2016.12.008. Acesso em: 07 dez. 2025.
    • APA

      Coutinho, A. da S., & Pereira, A. L. (2017). Equivariant bifurcations in a non-local model of ferromagnetic materials. Nonlinear Analysis, 37, 1-13. doi:10.1016/j.nonrwa.2016.12.008
    • NLM

      Coutinho A da S, Pereira AL. Equivariant bifurcations in a non-local model of ferromagnetic materials [Internet]. Nonlinear Analysis. 2017 ; 37 1-13.[citado 2025 dez. 07 ] Available from: https://doi.org/10.1016/j.nonrwa.2016.12.008
    • Vancouver

      Coutinho A da S, Pereira AL. Equivariant bifurcations in a non-local model of ferromagnetic materials [Internet]. Nonlinear Analysis. 2017 ; 37 1-13.[citado 2025 dez. 07 ] Available from: https://doi.org/10.1016/j.nonrwa.2016.12.008

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025